如圖,拋物線y=ax2+bx+c經(jīng)過A(﹣3.0)、C(0,4),點B在拋物線上,CB∥x軸,且AB平分∠CAO.
(1)求拋物線的解析式;
(2)線段AB上有一動點P,過點P作y軸的平行線,交拋物線于點Q,求線段PQ的最大值;
(3)拋物線的對稱軸上是否存在點M,使△ABM是以AB為直角邊的直角三角形?如果存在,求出點M的坐標;如果不存在,說明理由.
(1)拋物線的解析式為y=﹣x2+x+4;
(2)線段PQ的最大值為;
(3)符合要求的點M的坐標為(,9)和(,﹣11).
【解析】
試題分析:(1)如圖1,易證BC=AC,從而得到點B的坐標,然后運用待定系數(shù)法求出二次函數(shù)的解析式;
(2)如圖2,運用待定系數(shù)法求出直線AB的解析式.設(shè)點P的橫坐標為t,從而可以用t的代數(shù)式表示出PQ的長,然后利用二次函數(shù)的最值性質(zhì)就可解決問題;
(3)由于AB為直角邊,分別以∠BAM=90°(如圖3)和∠ABM=90°(如圖4)進行討論,通過三角形相似建立等量關(guān)系,就可以求出點M的坐標.
試題解析:(1)如圖1,
∵A(﹣3,0),C(0,4),
∴OA=3,OC=4.
∵∠AOC=90°,
∴AC=5.
∵BC∥AO,AB平分∠CAO,
∴∠CBA=∠BAO=∠CAB.
∴BC=AC.
∴BC=5.
∵BC∥AO,BC=5,OC=4,
∴點B的坐標為(5,4).
∵A(﹣3.0)、C(0,4)、B(5,4)在拋物線y=ax2+bx+c上,
∴
解得:
∴拋物線的解析式為y=﹣x2+x+4;
(2)如圖2,
設(shè)直線AB的解析式為y=mx+n,
∵A(﹣3.0)、B(5,4)在直線AB上,
∴
解得:
∴直線AB的解析式為y=x+.
設(shè)點P的橫坐標為t(﹣3≤t≤5),則點Q的橫坐標也為t.
∴yP=t+,yQ=﹣t2+t+4.
∴PQ=yQ﹣yP=﹣t2+t+4﹣(t+)
=﹣t2+t+4﹣t﹣
=﹣t2++
=﹣(t2﹣2t﹣15)
=﹣ [(t﹣1)2﹣16]
=﹣(t﹣1)2+.
∵﹣<0,﹣3≤1≤5,
∴當(dāng)t=1時,PQ取到最大值,最大值為.
∴線段PQ的最大值為;
(3)①當(dāng)∠BAM=90°時,如圖3所示.
拋物線的對稱軸為x=﹣=﹣=.
∴xH=xG=xM=.
∴yG=×+=.
∴GH=.
∵∠GHA=∠GAM=90°,
∴∠MAH=90°﹣∠GAH=∠AGM.
∵∠AHG=∠MHA=90°,∠MAH=∠AGM,
∴△AHG∽△MHA.
∴.
∴.
解得:MH=11.
∴點M的坐標為(,﹣11).
②當(dāng)∠ABM=90°時,如圖4所示.
∵∠BDG=90°,BD=5﹣=,DG=4﹣=,
∴BG=.
同理:AG=.
∵∠AGH=∠MGB,∠AHG=∠MBG=90°,
∴△AGH∽△MGB.
∴.
∴.
解得:MG=.
∴MH=MG+GH=+=9.
∴點M的坐標為(,9).
綜上所述:符合要求的點M的坐標為(,9)和(,﹣11).
考點:二次函數(shù)綜合題.
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(四川德陽卷)數(shù)學(xué)(解析版) 題型:解答題
如圖,已知矩形OABC的一個頂點B的坐標是(4,2),反比例函數(shù)y=(x>0)的圖象經(jīng)過矩形的對稱中心E,且與邊BC交于點 D.
(1)求反比例函數(shù)的解析式和點D的坐標;
(2)若過點D的直線y=mx+n將矩形OABC的面積分成3:5的兩部分,求此直線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(四川宜賓卷)數(shù)學(xué)(解析版) 題型:選擇題
一個袋子中裝有6個黑球3個白球,這些球除顏色外,形狀、大小、質(zhì)地等完全相同,在看不到球的條件下,隨機地從這個袋子中摸出一個球,摸到白球的概率為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(四川南充卷)數(shù)學(xué)(解析版) 題型:填空題
因式分解__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(四川南充卷)數(shù)學(xué)(解析版) 題型:選擇題
如圖,將正方形放在平面直角坐標系中,是原點,的坐標為(1,),則點的坐標為( )
A.(-,1) B.(-1,) C.(,1) D.(-,-1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(四川內(nèi)江卷)數(shù)學(xué)(解析版) 題型:填空題
如圖,∠AOB=30°,OP平分∠AOB,PC⊥OB于點C.若OC=2,則PC的長是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(四川內(nèi)江卷)數(shù)學(xué)(解析版) 題型:填空題
如圖,將若干個正三角形、正方形和圓按一定規(guī)律從左向右排列,那么第2014個圖形是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(吉林卷)數(shù)學(xué)(解析版) 題型:解答題
如圖,菱形ABCD中,對角線AC,BD相交于點O,且AC=6cm,BD=8cm,動點P,Q分別從點B,D同時出發(fā),運動速度均為1cm/s,點P沿B→C→D運動,到點D停止,點Q沿D→O→B運動,到點O停止1s后繼續(xù)運動,到B停止,連接AP,AQ,PQ.設(shè)△APQ的面積為y(cm2)(這里規(guī)定:線段是面積0的幾何圖形),點P的運動時間為x(s).
(1)填空:AB= cm,AB與CD之間的距離為 cm;
(2)當(dāng)4≤x≤10時,求y與x之間的函數(shù)解析式;
(3)直接寫出在整個運動過程中,使PQ與菱形ABCD一邊平行的所有x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(北京卷)數(shù)學(xué)(解析版) 題型:選擇題
已知點為某封閉圖形邊界上一定點,動點從點出發(fā),沿其邊界順時針勻速運動一周.設(shè)點運動的時間為,線段的長為.表示與的函數(shù)關(guān)系的圖象大致如右圖所示,則該封閉圖形可能是
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com