【題目】如圖,已知的直徑,、是半圓的弦,,若,則的長(zhǎng)為________

【答案】1

【解析】

根據(jù)已知可證△AOD為等邊三角形,P=30°,PA=AD=OA,再證明PD是切線,根據(jù)含30°角的直角三角形三邊的關(guān)系即可得出結(jié)果

AB為直徑∴∠ADB=90°.

∵∠BDE=60°,∴∠PDA=180°﹣90°﹣60°=30°,∴∠PBD=PDA=30°.

OB=OD,∴∠ODB=PBD=30°,∴∠ADO=60°,∴△ADO為等邊三角形,ODP=90°,AD=OAAOD=60°,PD為⊙O的切線,∴∠P=30°,PO=2OD,PD=OD,OD=1PO=2

OA=OD=1,∴PA=2-1=1

故答案為:1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一艘海輪位于燈塔P的北偏東方向55°,距離燈塔為2海里的點(diǎn)A.如果海輪沿正南方向航行到燈塔的正東位置,海輪航行的距離AB長(zhǎng)是(  )

A. 2海里 B. 2sin 55°海里

C. 2cos 55°海里 D. 2tan 55°海里

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線x軸交于A,B兩點(diǎn)(AB的左側(cè)),與y軸交于點(diǎn)C,頂點(diǎn)為D

1)請(qǐng)直接寫出點(diǎn)AC,D的坐標(biāo);

2)如圖(1),在x軸上找一點(diǎn)E,使得△CDE的周長(zhǎng)最小,求點(diǎn)E的坐標(biāo);

3)如圖(2),F為直線AC上的動(dòng)點(diǎn),在拋物線上是否存在點(diǎn)P,使得△AFP為等腰直角三角形?若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,其對(duì)稱軸為x=-1,且過(guò)點(diǎn)(-3,0).下列說(shuō)法:①abc0;②2a-b=0③4a+2b+c0;④3a+c=0;則其中說(shuō)法正確的是( ).

A. ①② B. ②③ C. ①②④ D. ②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線軸交于,兩點(diǎn),與軸交于點(diǎn),點(diǎn)和點(diǎn)的坐標(biāo)分別為,拋物線的對(duì)稱軸為,為拋物線的頂點(diǎn).

求拋物線的解析式.

拋物線的對(duì)稱軸上是否存在一點(diǎn),使為等腰三角形?若存在,寫出點(diǎn)點(diǎn)的坐標(biāo),若不存在,說(shuō)明理由.

點(diǎn)為線段上一動(dòng)點(diǎn),過(guò)點(diǎn)軸的垂線,與拋物線交于點(diǎn),求四邊形面積的最大值,以及此時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明和爸爸從家步行去公園,爸爸先出發(fā)一直勻速前行,小明后出發(fā).家到公園的距離為2500 m,如圖是小明和爸爸所走的路程s(m)與步行時(shí)間t(min)的函數(shù)圖象.

(1)直接寫出小明所走路程s與時(shí)間t的函數(shù)關(guān)系式;

(2)小明出發(fā)多少時(shí)間與爸爸第三次相遇?

(3)在速度都不變的情況下,小明希望比爸爸早20 min到達(dá)公園,則小明在步行過(guò)程中停留的時(shí)間需作怎樣的調(diào)整?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,反比例函數(shù)y=k0)與矩形OABC在第一象限相交于D、E兩點(diǎn),OA=2OC=4,連接ODOE、DE.△OAD△OCE的面積分別為S、S .

1點(diǎn)B的坐標(biāo)為 ②S S(填、、“=”);

2)當(dāng)點(diǎn)D為線段AB的中點(diǎn)時(shí),求k的值及點(diǎn)E的坐標(biāo);

3)當(dāng)S+S=2時(shí),試判斷△ODE的形狀,并求△ODE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,BDABC的角平分線,且BD=BC,EBD延長(zhǎng)線上的一點(diǎn),BE=BA,過(guò)EEFABF為垂足,下列結(jié)論:①△ABD≌△EBC;②∠BCE+BCD=180°;③AD=EF=EC;④AE=EC,其中正確的是________(填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市為了鼓勵(lì)居民在枯水期(當(dāng)年11月至第二年5月)節(jié)約用電,規(guī)定7002300為用電高峰期,此期間用電電費(fèi)y1(單位:元)與用電量x(單位:度)之間滿足的關(guān)系如圖所示;規(guī)定2300至第二天早上700為用電低谷期,此期間用電電費(fèi)y2(單位:元)與用電量x(單位:元)之間滿足如表所示的一次函數(shù)關(guān)系.

1)求y2x的函數(shù)關(guān)系式;并直接寫出當(dāng)0x180x180時(shí),y1x的函數(shù)關(guān)系式;

2)若市民王先生一家在12月份共用電350度,支付電費(fèi)150元,求王先生一家在高峰期和低谷期各用電多少度.

低谷期用電量x

80

100

140

低谷期用電電費(fèi)y2

20

25

35

查看答案和解析>>

同步練習(xí)冊(cè)答案