【題目】如圖,有一張矩形紙片,長15cm,寬9cm,在它的四角各剪去一個同樣的小正方形,然折疊成一個無蓋的長方體紙盒.若紙盒的底面(圖中陰影部分)面積是48cm2,求剪去的小正方形的邊長.設(shè)剪去的小正方形邊長是xcm,根據(jù)題意可列方程為_____

【答案】152x)(92x)=48

【解析】

設(shè)剪去的小正方形邊長是xcm,則紙盒底面的長為(152xcm,寬為(92xcm,根據(jù)長方形的面積公式結(jié)合紙盒的底面(圖中陰影部分)面積是48cm2,即可得出關(guān)于x的一元二次方程,此題得解.

解:設(shè)剪去的小正方形邊長是xcm,則紙盒底面的長為(152xcm,寬為(92xcm

根據(jù)題意得:(152x)(92x)=48

故答案是:(152x)(92x)=48

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線行經(jīng)過點(diǎn)和點(diǎn),交軸正半軸于點(diǎn),連接,點(diǎn)是線段上動點(diǎn)(不與點(diǎn)重合),以為邊在軸上方作正方形,接,將線段繞點(diǎn)逆時針旋轉(zhuǎn)90°,得到線段,過點(diǎn)軸,交拋物線于點(diǎn),設(shè)點(diǎn)

1)求拋物線的解析式;

2)若相似求的值;

3)當(dāng)時,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某廠家以A、B兩種原料,利用不同的工藝手法生產(chǎn)出了甲、乙兩種袋裝產(chǎn)品,其中,甲產(chǎn)品每袋含1.5千克A原料、1.5千克B原料;乙產(chǎn)品每袋含2千克A原料、1千克B原料.甲、乙兩種產(chǎn)品每袋的成本價分別為袋中兩種原料的成本價之和.若甲產(chǎn)品每袋售價72元,則利潤率為20%.某節(jié)慶日,廠家準(zhǔn)備生產(chǎn)若干袋甲產(chǎn)品和乙產(chǎn)品,甲產(chǎn)品和乙產(chǎn)品的數(shù)量和不超過100袋,會計在核算成本的時候把A原料和B原料的單價看反了,后面發(fā)現(xiàn)如果不看反,那么實際成本比核算時的成本少500元,那么廠家在生產(chǎn)甲乙兩種產(chǎn)品時實際成本最多為_____元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=x+b和反比例函數(shù)y=k≠0)交于點(diǎn)A4,1).

1)求反比例函數(shù)和一次函數(shù)的解析式;

2)求△AOB的面積;

3)根據(jù)圖象直接寫出一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店準(zhǔn)備購進(jìn)兩種商品,種商品每件的進(jìn)價比種商品每件的進(jìn)價多元,用元購進(jìn)種商品和用元購進(jìn)種商品的數(shù)量相同.商店將種商品每件的售價定為元,種商品每件的售價定為元.

1種商品每件的進(jìn)價和種商品每件的進(jìn)價各是多少元?

2)商店計劃用不超過元的資金購進(jìn)兩種商品共件,其中種商品的數(shù)量不低于種商品數(shù)上的一半,該商店有幾種進(jìn)貨方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)分別是邊長為2的正六邊形中不相鄰三條邊的中點(diǎn),則的周長為(

A.6B.C.D.9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形中,,于點(diǎn),于點(diǎn),若,則的大小是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了獎勵優(yōu)秀班集體,學(xué)校購買了若干副乒乓球拍和羽毛球拍,購買2副乒乓球拍和1副羽毛球拍共需116,購買3幅乒乓球拍和2幅羽毛球拍共需204.

(1)每副乒乓球拍和羽毛球拍的單價各是多少元?

(2)若學(xué)校購買5副乒乓球拍和3副羽毛球拍,一共應(yīng)支出多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2016雙十一期間,某快遞公司計劃租用甲、乙兩種車輛快遞貨物,從貨物量來計算:若租用兩種車輛合運(yùn),10天可以完成任務(wù);若單獨(dú)租用乙種車輛,完成任務(wù)的天數(shù)是單獨(dú)租用甲種車輛完成任務(wù)天數(shù)的2倍.

(1)求甲、乙兩種車輛單獨(dú)完成任務(wù)分別需要多少天?

(2)已知租用甲、乙兩種車輛合運(yùn)需租金65000元,甲種車輛每天的租金比乙種車輛每天的租金多1500元,試問:租甲和乙兩種車輛、單獨(dú)租甲種車輛、單獨(dú)租乙種車輛這三種租車方案中,哪一種租金最少?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案