【題目】已知a+b=2,ab=﹣3,則a2﹣ab+b2的值為_____.
科目:初中數(shù)學 來源: 題型:
【題目】下列判斷正確的個數(shù)是( 。
(1)能夠完全重合的兩個圖形全等;
(2)兩邊和一角對應(yīng)相等的兩個三角形全等;
(3)兩角及其夾邊分別相等的兩個三角形全等;
(4)全等三角形對應(yīng)邊相等.
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】準備一張矩形紙片,按如圖操作:將△ABE沿BE翻折,使點A落在對角線BD上的M點,將△CDF沿DF翻折,使點C落在對角線BD上的N點.
(1)、求證:四邊形BFDE是平行四邊形;
(2)、若四邊形BFDE是菱形, AB=2,求菱形BFDE的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知如圖,∠COD=90°,直線AB與OC交于點B,與OD交于點A,射線OE和射線AF交于點G.
(1)若OE平分∠BOA,AF平分∠BAD,∠OBA=30°,則∠OGA=
(2)若∠GOA=∠BOA,∠GAD=∠BAD,∠OBA=30°,則∠OGA=
(3)將(2)中“∠OBA=30°”改為“∠OBA=α”,其余條件不變,則∠OGA= α (用含α的代數(shù)式表示)
(4)若OE將∠BOA分成1:2兩部分,AF平分∠BAD,∠ABO=α(30°<α<90°),求∠OGA的度數(shù)(用含α的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在四邊形ABCD的邊AB上任取一點E(點E不與點A、點B重合),分別連接ED,EC,可以把四邊形ABCD分成三個三角形,如果其中有兩個三角形相似,我們就把E叫做四邊形ABCD的邊AB上的相似點;如果這三個三角形都相似,我們就把E叫做四邊形ABCD的邊AB上的強相似點.解決問題:
(1)如圖1,∠A=∠B=∠DEC=55°,試判斷點E是否是四邊形ABCD的邊AB上的相似點,并說明理由;
(2)如圖2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四點均在正方形網(wǎng)格(網(wǎng)格中每個小正方形的邊長為1)的格點(即每個小正方形的頂點)上,試在圖2中畫出矩形ABCD的邊AB上的一個強相似點E.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD為正方形,點A的坐標為(0,2),點B的坐標為(0,-3),反比例函數(shù)的圖象經(jīng)過點C,一次函數(shù)y=ax+b的圖象經(jīng)過點A、C
(1)求反比例函數(shù)和一次函數(shù)的解析式
(2)若點P是反比例函數(shù)圖象上的一點,△OAP的面積恰好等于正方形ABCD的面積,請直接寫出P點的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com