【題目】ABCD中,點(diǎn)EAB的中點(diǎn),在直線AD上截取AF=2FD,EFACG,則=___________.

【答案】

【解析】①點(diǎn)F在線段AD上時(shí),設(shè)EFCD的延長(zhǎng)線交于H,

∵AB∥CD,

∴△EAF∽△HDF,

∴HD:AE=DF:AF=1:2,

HD=AE

∵AB∥CD,

∴△CHG∽△AEG,

∴AG:CG=AE:CH

∵AB=CD=2AE,

CH=CD+DH=2AE+AE=AE

∴AG:CG=2:5,

∴AG:(AG+CG)=2:(2+5),

AG:AC=2:7;

②點(diǎn)F在線段AD的延長(zhǎng)線上時(shí),設(shè)EFCD交于H,

∵AB∥CD,

∴△EAF∽△HDF,

∴HD:AE=DF:AF=1:2,

HD=AE

∵AB∥CD,

∴△CHG∽△AEG,

∴AG:CG=AE:CH

∵AB=CD=2AE,

CH=CD-DH=2AE-AE=AE,

∴AG:CG=2:3,

∴AG:(AG+CG)=2:(2+3),

AG:AC=2:5,

故答案為: .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知矩形AOBC的頂點(diǎn)C的坐標(biāo)是(24),動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿線段AO向終點(diǎn)O運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),沿線段BC向終點(diǎn)C運(yùn)動(dòng).點(diǎn)PQ的運(yùn)動(dòng)速度均為1個(gè)單位,運(yùn)動(dòng)時(shí)間為t秒.過(guò)點(diǎn)PPEAOAB于點(diǎn)E

1)求直線AB的解析式;

2)設(shè)PEQ的面積為S,求St時(shí)間的函數(shù)關(guān)系,并指出自變量t的取值范圍;

3)在動(dòng)點(diǎn)P、Q運(yùn)動(dòng)的過(guò)程中,點(diǎn)H是矩形AOBC內(nèi)(包括邊界)一點(diǎn),且以B、Q、E、H為頂點(diǎn)的四邊形是菱形,直接寫(xiě)出t值和與其對(duì)應(yīng)的點(diǎn)H的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,長(zhǎng)方形ABCD的長(zhǎng)為6,寬為4,將長(zhǎng)方形先向上平移2個(gè)單位,再向右平移2個(gè)單位得到長(zhǎng)方形,則陰影部分面積是( )

A.12B.10C.8D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人在直線道路上同起點(diǎn)、同終點(diǎn)、同方向,分別以不同的速度勻速跑1500米,先到終點(diǎn)的人原地休息,已知甲先出發(fā)30秒后,乙才出發(fā),甲在跑步的整個(gè)過(guò)程中,甲、乙兩人的距離y(米)與甲出發(fā)的時(shí)間x(秒)之間的關(guān)系如圖所示,則乙到終點(diǎn)時(shí),甲距終點(diǎn)的距離是( )米

A. 150 B. 175 C. 180 D. 225

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,ABC=ADC=90°,對(duì)角線AC,BD交于點(diǎn)O,DE平分∠ADCBC于點(diǎn)E,連接OE.

(1)求證:四邊形ABCD是矩形;

(2)若AB=2,求OEC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線軸交于AB兩點(diǎn)(A點(diǎn)在B點(diǎn)左側(cè)),與軸交于點(diǎn)C,連接BC、ACtanOCB -tanOCA=1,OB=4OA.

1)求b的值;

2)點(diǎn)E在線段BC上,點(diǎn)FBC的延長(zhǎng)線上,且BE=CF,點(diǎn)D是直線BC下方拋物線上一點(diǎn),當(dāng)EDF是以EF為斜線的直角三角形,且4ED=3FD時(shí),求D點(diǎn)坐標(biāo);

3)在(2)的條件下,過(guò)點(diǎn)AAG軸,R為拋物線上CD段上一點(diǎn),連接AR,點(diǎn)KAR上,連接DK并延長(zhǎng)交AG于點(diǎn)G,連接DR,且2RDK+RKD=90°,GAR=RDK,若點(diǎn)Mw為坐標(biāo)平面內(nèi)一點(diǎn),直線MD與直線BC交于點(diǎn)N,當(dāng)MN=DN時(shí),求MRD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠C=90°,DAC上一點(diǎn),連接BD,DFBDAB于點(diǎn)F,BDF的外接圓⊙O與邊BC相較于點(diǎn)M,與AC相切于點(diǎn)D。過(guò)點(diǎn)MAB的垂線交BD于點(diǎn)E,交⊙O于點(diǎn)N,交AB于點(diǎn)H,連接FN.

1)求證:BD平分∠ABC;

2)連接FMBD相交于點(diǎn)K,求證:MK=ME;

3)若AF=1,tanN=,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校260名學(xué)生參加獻(xiàn)愛(ài)心捐款活動(dòng),每人捐款47元,活動(dòng)結(jié)束后隨機(jī)抽查了20名學(xué)生每人的捐款數(shù)量,并按每人的捐款數(shù)量分為四種類(lèi)型,A:捐款4元;B:捐款5元;C:捐款6元;D:捐款7元,并將其繪成如圖所示的條形統(tǒng)計(jì)圖.

1)通過(guò)計(jì)算補(bǔ)全條形統(tǒng)計(jì)圖;

2)直接寫(xiě)出這20名學(xué)生每人捐款數(shù)量的眾數(shù)和中位數(shù);

3)求這20名學(xué)生每人捐款數(shù)量的的平均數(shù),并估計(jì)260名學(xué)生共捐款多少元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我校為了創(chuàng)建書(shū)香校園,購(gòu)買(mǎi)了一批圖書(shū),其中科普類(lèi)圖書(shū)平均每本的 價(jià)格比文學(xué)類(lèi)圖書(shū)平均每本的價(jià)格多4元,已知學(xué)校用16000元購(gòu)買(mǎi)的科普類(lèi)圖書(shū)的本數(shù)與用12000元購(gòu)買(mǎi)的文學(xué)類(lèi)圖書(shū)的本數(shù)相等.求學(xué)校購(gòu)買(mǎi)的科普類(lèi)圖書(shū)和文學(xué)類(lèi)圖書(shū)平均每本的價(jià)格各是多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案