【題目】如圖,在平面直角坐標系中,已知矩形AOBC的頂點C的坐標是(2,4),動點P從點A出發(fā),沿線段AO向終點O運動,同時動點Q從點B出發(fā),沿線段BC向終點C運動.點P、Q的運動速度均為1個單位,運動時間為t秒.過點PPEAOAB于點E

1)求直線AB的解析式;

2)設PEQ的面積為S,求St時間的函數(shù)關系,并指出自變量t的取值范圍;

3)在動點P、Q運動的過程中,點H是矩形AOBC內(包括邊界)一點,且以B、Q、E、H為頂點的四邊形是菱形,直接寫出t值和與其對應的點H的坐標.

【答案】(1)直線AB的解析式為y=﹣2x+4.(2)St2﹣t(2<t≤4).(3)t1=,H1),t2=20﹣,H2(10﹣,4).

【解析】試題分析:(1)根據(jù)待定系數(shù)法即可得到;

2)過點QQF//x軸交y軸于點F,有兩種情況:當0t2時,PF=4﹣2t,當2t≤4時,PF=2t﹣4,然后根據(jù)面積公式即可求得;

3)由菱形的鄰邊相等即可得到.

試題解析:(1∵C24),

∴A0,4),B2,0),

設直線AB的解析式為y=kx+b,

,

解得

直線AB的解析式為y=﹣2x+4

2)如圖2,過點QQF⊥y軸于F

∵PE//OB,

AP=BQ=t,PE=t,AF=CQ=4﹣t,

0t2時,PF=4﹣2t

∴S=PEPF=×t4﹣2t=t﹣t2,

S=﹣t2+t0t2),

2t≤4時,PF=2t﹣4,

∴S=PEPF=×t2t﹣4=t2﹣t2t≤4).

3t1=,H1,),

t2=20﹣8,H210﹣4,4).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,四邊形ABCD為矩形,,,點ECD的中點,點PAB上以每秒2個單位的速度由AB運動,設運動時間為t秒.

1)當點P在線段AB上運動了t秒時,__________________(用代數(shù)式表示);

2t為何值時,四邊形PDEB是平行四邊形:

3)在直線AB上是否存在點Q,使以D、E、Q、P四點為頂點的四邊形是菱形?若存在,求出t的值:若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程

1)求證:方程有兩個不相等的實數(shù)根;

2)若△ABC的兩邊ABAC的長是方程的兩個實數(shù)根,第三邊BC的長為5。當△ABC是等腰三角形時,求k的值。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1 將一副三角板中的兩塊直角三角尺的直角頂點O按如圖方式疊放在一起, AOB=DOC=90°.

①如圖(1),若OD是∠AOB的平分線時,求∠BOD和∠AOC的度數(shù).

②如圖(2),若OD不是∠AOB的平分線,試猜想∠AOC與∠BOD的數(shù)量關系,并說明理由.

2)如圖(3),如果兩個角∠AOB = DOC= m°(0< m <90),直接寫出∠AOC與∠BOD的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面是小明解方程的過程,請你仔細閱讀,并解答所提出的問題:

解:去括號,得

(第一步)

移項,得

(第二步)

合并同類項,得

(第三步)

系數(shù)化為1,得

(第四步)

1)該同學解答過程從第_____步開始出錯,錯誤原因是______________________;

2)寫出正確的解答過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠AOB=165°,OD平分∠AOC

1)若∠AOD=50°,求∠BOC度數(shù);

2)若∠BOD=110°,那么OC是∠BOD的平分線嗎?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC內接于⊙O,AB為直徑,點D在⊙O上,過點D作⊙O切線與AC的延長線交于點E,ED∥BC,連接AD交BC于點F.

(1)求證:∠BAD=∠DAE;

(2)若AB=6,AD=5,求DF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,兩個形狀、大小完全相同的含有、的直角三角板如圖①放置,與直線重合,且三角板、三角板均可繞點逆時針旋轉.

圖① 圖②

1)直接寫出的度數(shù)是______.

2)如圖②,在圖①基礎上,若三角板的邊處開始繞點逆時針旋轉,轉速為4.5/秒,同時三角板的邊處開始繞點逆時針旋轉,轉速為0.5/秒,(當轉到與重合時,兩三角板都停止轉動),在旋轉過程中,當重合時,求旋轉的時間是多少?

3)在(2)的條件下,、、三條射線中,當其中一條射線平分另兩條射線的夾角時,請求出旋轉的時間.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABCD中,點EAB的中點,在直線AD上截取AF=2FDEFACG,則=___________.

查看答案和解析>>

同步練習冊答案