【題目】如圖,AB是⊙O的直徑,C點在⊙O上,AD平分∠BAC交⊙O于D,過D作直線AC的垂線,交AC的延長線于E,連接BD,CD.
(1)求證:直線DE是⊙O的切線;
(2)若直徑AB=6,填空:
①當(dāng)AD= 時,四邊形ACDO是菱形;
②過D作DH⊥AB,垂足為H,當(dāng)AD= 時,四邊形AHDE是正方形.
【答案】(1)證明見解析;(2)①3②3
【解析】
(1)連接,根據(jù)平分,和,可證明,再根據(jù)即可證明直線是的切線;
(2)①根據(jù)四邊形是菱形,可得,得,進(jìn)而可求的長;
②當(dāng),即與重合時,四邊形是正方形,根據(jù)勾股定理即可得的長.
(1)證明:如圖,連接OD,
∵OA=OD,
∴∠OAD=∠ODA,
∵AD平分∠BAC,
∴∠CAD=∠OAD,
∴∠CAD=∠ODA,
∴AC∥OD,
∵DE⊥AE,
∴∠AED=90°,
∴∠ODE=90°,
∴DE⊥OD,OD是⊙O的半徑,
∴直線DE是⊙O的切線;
(2)解: ①當(dāng)時,四邊形是菱形,
理由:四邊形ACDO是菱形時,OD=CD=BD=OB,
∴∠DBA=60°,
∵AB是⊙O的直徑,
∴∠ADB=90°,
.
當(dāng)時,四邊形是菱形.
故答案為:;
②過D作DH⊥AB,垂足為H,當(dāng)時,四邊形是正方形.
理由:當(dāng)DH⊥AB,即DH與DO重合時,四邊形AHDE是正方形,
由勾股定理,得.
當(dāng)時,四邊形是正方形.
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人相約周末登花果山,甲、乙兩人距地面的高度y(米)與登山時間x(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問題:
(1)甲登山上升的速度是每分鐘 米,乙在A地時距地面的高度b為 米;
(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,請求出乙登山全程中,距地面的高度y(米)與登山時間x(分)之間的函數(shù)關(guān)系式;
(3)登山多長時間時,甲、乙兩人距地面的高度差為70米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等邊中,點在邊上,以為半徑的交于點,過點作于點.
(1)如圖1,求證:為的切線;
(2)如圖2,連接交于點,若為中點,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知內(nèi)接于⊙,直徑交于點,連接,過點作,垂足為.過點作⊙的切線,交的延長線于點.
(1)若,求的度數(shù);
(2)若,求證:;
(3)在(2)的條件下,連接,設(shè)的面積為,的面積為,若,求的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,AB是⊙O的直徑,點C在⊙O上,點P是AB延長線上一點,連接CP.
(1)如圖1,若∠PCB=∠A.
①求證:直線PC是⊙O的切線;
②若CP=CA,OA=2,求CP的長;
(2)如圖2,若點M是弧AB的中點,CM交AB于點N,MNMC=9,求BM的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c交x軸于A、B兩點,其中點A坐標(biāo)為(1,0),與y軸交于點C(0,﹣3).
(1)求拋物線的函數(shù)表達(dá)式;
(2)如圖①,連接AC,點P在拋物線上,且滿足∠PAB=2∠ACO.求點P的坐標(biāo);
(3)如圖②,點Q為x軸下方拋物線上任意一點,點D是拋物線對稱軸與x軸的交點,直線AQ、BQ分別交拋物線的對稱軸于點M、N.請問DM+DN是否為定值?如果是,請求出這個定值;如果不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=-x2+bx+c與x軸相交于A(-1,0),B(5,0)兩點.
(1)求拋物線的解析式;
(2)在第二象限內(nèi)取一點C,作CD垂直x軸于點D,鏈接AC,且AD=5,CD=8,將Rt△ACD沿x軸向右平移m個單位,當(dāng)點C落在拋物線上時,求m的值;
(3)在(2)的條件下,當(dāng)點C第一次落在拋物線上記為點E,點P是拋物線對稱軸上一點.試探究:在拋物線上是否存在點Q,使以點B、E、P、Q為頂點的四邊形是平行四邊形?若存在,請出點Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A(-2,0),B(0,1),以線段AB為邊在第二象限作矩形ABCD,雙曲線(k<0)經(jīng)過點D,連接BD,若四邊形OADB的面積為6,則k的值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次初中生田徑運動會上,根據(jù)參加男子跳高初賽的運動員的成績(單位:m),繪制出如下的統(tǒng)計圖①和圖②,請根據(jù)相關(guān)信息,解答下列問題:
(Ⅰ)圖①中a的值為 ;
(Ⅱ)求統(tǒng)計的這組初賽成績數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù)(結(jié)果保留小數(shù)點后兩位);
(Ⅲ)根據(jù)這組初賽成績,由高到低確定7人進(jìn)入復(fù)賽,請直接寫出初賽成績?yōu)?/span>1.60m的運動員能否進(jìn)入復(fù)賽.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com