【題目】如圖,已知拋物線y=x2﹣2bx﹣3(b為常數(shù),b<0).
(1)拋物線y=x2﹣2bx﹣3總經(jīng)過一定點,定點坐標為;
(2)拋物線的對稱軸為直線x=(用含b的代數(shù)式表示),位于y軸的
側(cè).
(3)思考:若點P(﹣2,﹣1)在拋物線y=x2﹣2bx﹣3上,拋物線與反比例函數(shù)y= (k>0,x>0)的圖象在第一象限內(nèi)交點的橫坐標為a,且滿足2<a<3,試確定k的取值范圍.
(4)探究:設(shè)點A是拋物線上一點,且點A的橫坐標為m,以點A為頂點做邊長為1的正方形ABCD,AB⊥x軸,點C在點A的右下方,若拋物線與CD邊相交于點P(不與D點重合且不在y軸上),點P的縱坐標為﹣3,求b與m之間的函數(shù)關(guān)系式.
【答案】
(1)(0,﹣3)
(2)b;左
(3)
解:把P(﹣2,﹣1)代入y=x2﹣2bx﹣3得4+4b﹣3=﹣1,解得b=﹣1,
拋物線解析式為y=x2+2x﹣3,
當a=2時,y=x2+2x﹣3=4+4﹣3=5,
當a=3時,y=x2+2x﹣3=9+6﹣3=12,
所以二次函數(shù)圖象與反比例函數(shù)的交點在拋物線上的點(2,5),(3,12)之間,
所以2×5<k<3×12,
即10<k<36
(4)
解:設(shè)A(m,m2+2m﹣3),
∵正方形ABCD的邊長為1,AB⊥x軸,
∴D(m+1,m2+2m﹣3),
∴P點的坐標為(m+1,﹣3),
把P(m+1,﹣3)代入y=x2﹣2bx﹣3得(m+1)2﹣2b(m+1)﹣3=﹣3,
而m+1≠0,
∴m+1﹣2b=0,
∴b=
【解析】解:(1)當x=0時,y=x2﹣2bx﹣3=﹣3,
所以拋物線經(jīng)過定點(0,﹣3);(2)拋物線的對稱軸為直線x=﹣ =b,
因為b<0,
所以拋物線的對稱軸在y軸的左側(cè);
故答案為(0,﹣3),b,左;
解:(1)拋物線與y軸的交點為定點;當x=0時,y=x2﹣2bx﹣3=﹣3,
所以拋物線經(jīng)過定點(0,﹣3);(2)利用拋物線的對稱軸方程得到拋物線的對稱軸為直線x=b,然后利用b的范圍確定拋物線的對稱軸在y軸的左側(cè);(3)思考:把P點坐標代入y=x2﹣2bx﹣3得b=﹣1,則拋物線解析式為y=x2+2x﹣3,再分別計算出a=2和a=3所對應的二次函數(shù)值,從而確定反比例函數(shù)與拋物線的交點的位置,然后利用反比例函數(shù)圖象上點的坐標特征確定k的范圍;(4)探究:設(shè)A(m,m2+2m﹣3),利用正方形的性質(zhì)得D(m+1,m2+2m﹣3),則P點的坐標為(m+1,﹣3),然后把P(m+1,﹣3)代入y=x2﹣2bx﹣3可得到b與m的關(guān)系式.
科目:初中數(shù)學 來源: 題型:
【題目】”切實減輕學生課業(yè)負擔”是我市作業(yè)改革的一項重要舉措.某中學為了解本校學生平均每天的課外作業(yè)時間,隨機抽取部分學生進行問卷調(diào)查,并將調(diào)查結(jié)果分為A、B、C、D四個等級,A:1小時以內(nèi);B:1小時﹣﹣1.5小時;C:1.5小時﹣﹣2小時;D:2小時以上.根據(jù)調(diào)查結(jié)果繪制了如圖所示的兩種不完整的統(tǒng)計圖,
請根據(jù)圖中信息解答下列問題:
(1)該校共調(diào)查了學生;
(2)請將條形統(tǒng)計圖補充完整;
(3)表示等級A的扇形圓心角α的度數(shù)是;
(4)在此次調(diào)查問卷中,甲、乙兩班各有2人平均每天課外作業(yè)量都是2小時以上,從這4人中人選2人去參加座談,用列表表或畫樹狀圖的方法求選出的2人來自不同班級的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過原點O和x軸上另一點A,它的對稱軸x=2與x軸交于點C,直線y=﹣2x﹣1經(jīng)過拋物線上一點B(﹣2,m),且與y軸、直線x=2分別交于點D、E.
(1)求m的值及該拋物線對應的函數(shù)關(guān)系式;
(2)判斷直線BE與拋物線交點的個數(shù);
(3)求證:CD垂直平分BE;
(4)若P是該拋物線上的一個動點,是否存在這樣的點P,使得△PBE是等腰直角三角形,且∠PEB=90°?若存在,試求出所有符合條件的點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知平行四邊形ABCD的點A(0,﹣2)、點B(3m,4m+1)(m≠﹣1),點C(6,2),則對角線BD的最小值是__.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市中小學全面開展“陽光體育”活動,某校在大課間中開設(shè)了A:體操,B:跑操,C:舞蹈,D:健美操四項活動,為了解學生最喜歡哪一項活動,隨機抽取了部分學生進行調(diào)查,并將調(diào)查結(jié)果繪制成了如下兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖回答下列問題:
(1)這次被調(diào)查的學生共有 人.
(2)請將統(tǒng)計圖2補充完整.
(3)統(tǒng)計圖1中B項目對應的扇形的圓心角是 度.
(4)已知該校共有學生3600人,請根據(jù)調(diào)查結(jié)果估計該校喜歡健美操的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸的交點的橫坐標分別為﹣1,3,則下列結(jié)論正確的個數(shù)有( ) ①ac<0;②2a+b=0;③4a+2b+c>0;④對于任意x均有ax2+bx≥a+b.
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1)所示,E為矩形ABCD的邊AD上一點,動點P,Q同時從點B出發(fā),點P沿折線BE﹣ED﹣DC運動到點C時停止,點Q沿BC運動到點C時停止,它們運動的速度都是1cm/秒.設(shè)P、Q同時出發(fā)t秒時,△BPQ的面積為ycm2 . 已知y與t的函數(shù)關(guān)系圖象如圖(2)(曲線OM為拋物線的一部分),則下列結(jié)論:①AD=BE=5;② ;③當0<t≤5時, ;④當 秒時,△ABE∽△QBP;其中正確的結(jié)論是( )
A.①②③
B.②③
C.①③④
D.②④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為落實優(yōu)秀傳統(tǒng)文化進校園,某校計劃購進“四書”、“五經(jīng)”兩套圖書供學生借閱,已知這兩套圖書單價和為660元,一套“四書”比一套“五經(jīng)”的2倍少60元.
(1)分別求出這兩套圖書的單價;
(2)該校購買這兩套圖書不超過30600元,且購進“四書”至少33套,“五經(jīng)”的套數(shù)是“四書”套數(shù)的2倍,該校共有哪幾種購買方案?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com