【題目】如圖,在四邊形ABCD中,AB=BC,對角線BD平分∠ABC,P是BD上一點,過點P作PM⊥AD,PN⊥CD,垂足分別為M,N.
(1)求證:∠ADB=∠CDB;
(2)若∠ADC=90°,求證:四邊形MPND是正方形.

【答案】
(1)證明:∵對角線BD平分∠ABC,

∴∠ABD=∠CBD,

在△ABD和△CBD中,

,

∴△ABD≌△CBD(SAS),

∴∠ADB=∠CDB


(2)證明:∵PM⊥AD,PN⊥CD,

∴∠PMD=∠PND=90°,

∵∠ADC=90°,

∴四邊形MPND是矩形,

∵∠ADB=∠CDB,

∴∠ADB=45°

∴PM=MD,

∴四邊形MPND是正方形.


【解析】(1)根據(jù)角平分線的性質(zhì)和全等三角形的判定方法證明△ABD≌△CBD,由全等三角形的性質(zhì)即可得到:∠ADB=∠CDB;(2)若∠ADC=90°,由(1)中的條件可得四邊形MPND是矩形,再根據(jù)兩邊相等的四邊形是正方形即可證明四邊形MPND是正方形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在直角坐標系中,直線l1經(jīng)過點(1,﹣3)和(3,1),直線l2經(jīng)過(1,0),且與直線l1交于點A(2,a).
(1)求a的值;
(2)A(2,a)可看成怎樣的二元一次方程組的解?
(3)設直線l1與y軸交于點B,直線l2與y軸交于點C,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)題意解答
(1)一個角的余角與這個角的補角的和比平角的 多1°,求這個角的度數(shù).
(2)已知5m=2,5n=3,求53m2n

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,四邊形ABCD,∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在矩形ABCD中,點E,F(xiàn)分別在AB,CD邊上,BE=DF,連接CE,AF.求證:AF=CE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列運算中正確的是( 。

A. x2+x22x4B. x5x3x2

C. x2x3x6D. (﹣x6÷(﹣x2)=﹣x4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若(a﹣2)2+|b+3|=0,則(a+b)2014=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果用﹣10%表示某商品的出口額比上一年減少10%,那么+12%則表示該商品的出口額比上一年(
A.減少12%
B.增加12%
C.減少22%
D.增加2%

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平面坐標系中,點P34)是線段AB上一點,以原點為位似中心把△AOB擴大到原來的2倍,則點P對應的點的坐標是_____

查看答案和解析>>

同步練習冊答案