【題目】在平面直角坐標系中,直線與反比例函數在第一象限內的圖象交于點.
(1)求m、b的值;
(2)點B在反比例函數的圖象上,且點B的橫坐標為1.若在直線l上存在一點P(點P不與點A重合),使得,結合圖象直接寫出點P的橫坐標的取值范圍.
科目:初中數學 來源: 題型:
【題目】為了解某中學學生課余活動情況,對喜愛看課外書、體育活動、看電視、社會實踐四個方面的人數進行調查統(tǒng)計,現從該校隨機抽取名學生作為樣本,采用問卷調查的方式收集數據(參與問卷調查的每名學生只能選擇其中--項),并據調查得到的數據繪制成了如圖所示的兩幅不完整的統(tǒng)計圖,由圖中提供的信息,解答下列問題:
(1) ,直接補全條形統(tǒng)計圖;
(2)若該校共有學生名,試估計該校喜愛看課外書的學生人數;
(3)若被調查喜愛體育活動的名學生中有名男生和名女生,現從這名學生中任意抽取名,請用列表或畫樹狀圖的方法求恰好抽到名男生的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有六張正面分別標有數字﹣2,﹣1,0,1,2,3的不透明卡片,它們除數字不同外其余全部相同.現將它們背面朝上,洗勻后從中任取一張,將該卡片上的數字記為a,將該卡片上的數字加1記為b,則函數y=ax2+bx+2的圖象過點(1,3)的概率為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(本題10分)如圖,在平面直角坐標系xOy中,直線與y軸交于點C,與x軸交于點B,拋物線經過B、C兩點,與x軸的正半軸交于另一點A,且OA :OC="2" :7.
(1)求拋物線的解析式;
(2)點D為線段CB上,點P在對稱軸的右側拋物線上,PD=PB,當tan∠PDB=2,求P點的坐標;
(3)在(2)的條件下,點Q(7,m)在第四象限內,點R在對稱軸的右側拋物線上,若以點P、D、Q、R為頂點的四邊形為平行四邊形,求點Q、R的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,點A的坐標為,點B的坐標為,且,.給出如下定義:若平面上存在一點P,使是以線段為斜邊的直角三角形,則稱點P為點A、點B的“直角點”.
(1)已知點A的坐標為.
①若點B的坐標為,在點、和中,是點A、點B的“直角點”的是_________;
②點B在x軸的正半軸上,且,當直線上存在點A、點B的“直角點”時,求b的取值范圍;
(2)的半徑為r,點為點、點的“直角點”,若使得與有交點,直接寫出半徑r的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線y=x﹣2與x軸交于點A,以OA為斜邊在x軸的上方作等腰直角三角形OAB,將△OAB沿x軸向右平移,當點B落在直線y=x﹣2上時,則線段AB在平移過程中掃過部分的圖形面積為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在△ABC中,AB=AC,∠BAC=60°,D為BC邊上一點,(不與點B、C)重合,將線段AD繞點A逆時針旋轉60°得到AE,連接EC,則∠ACE的度數是__________,線段AC,CD,CE之間的數量關系是_______________.
(2)2,在△ABC中,AB=AC,∠BAC=90°,D為BC邊上一點(不與點B、C重合),將線段AD繞點A逆時針旋轉90°得到AE,連接EC,請寫出∠ACE的度數及線段AD,BD,CD之間的數量關系,并說明理由.
(3)如圖3,在Rt△DBC中,DB=3,DC=5,∠BDC=90°,若點A滿足AB=AC,∠BAC=90°,請直接寫出線段AD的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,把某矩形紙片ABCD沿EF,GH折疊(點E,H在AD邊上,點F,G在BC邊上),使點B和點C落在AD邊上同一點P處,A點的對稱點為A′點,D點的對稱點為D′點,若∠FPG=90°,△A′EP的面積為8,△D′PH的面積為2,則矩形ABCD的面積等于 ( )
A.B.C.D.16+12
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com