【題目】在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),點(diǎn)(0,1),點(diǎn)(1,0),正方形的兩條對(duì)角線的交點(diǎn)為,延長(zhǎng)至點(diǎn),使.延長(zhǎng)至點(diǎn),使,以為鄰邊做正方形

(Ⅰ)如圖①,求的長(zhǎng)及的值;

(Ⅱ)如圖②,正方形固定,將正方形繞點(diǎn)逆時(shí)針旋轉(zhuǎn),得正方形,記旋轉(zhuǎn)角為(0°<<360°),連接

旋轉(zhuǎn)過(guò)程中,當(dāng)90°時(shí),求的大;

②在旋轉(zhuǎn)過(guò)程中,求的長(zhǎng)取最大值時(shí),點(diǎn)的坐標(biāo)及此時(shí)的大小(直接寫出結(jié)果即可)

【答案】(Ⅰ),;(Ⅱ)①30°,150°,②),315°.

【解析】試題分析:()根據(jù)正方形的性質(zhì)以及勾股定理即可解決問(wèn)題

①因?yàn)椤?/span>BAG′=90°,BG′=2AB可知sinAGB==,推出∠AGB=30°,推出旋轉(zhuǎn)角α=30°,據(jù)對(duì)稱性可知當(dāng)∠ABG″=60°時(shí),BAG″=90°,也滿足條件,此時(shí)旋轉(zhuǎn)角α=150°;

②當(dāng)α=315°時(shí),AB、F在一條直線上時(shí),AF的長(zhǎng)最大

試題解析:()如圖1中,∵A0,1),OA=1∵四邊形OADC是正方形∴∠OAD=90°,AD=OA=1OD=AC==,AB=BC=BD=BO=BD=DGBG=,==

①如圖2中,∵∠BAG′=90°,BG′=2AB,sinAGB==,∴∠AGB=30°,∴∠ABG′=60°,∴∠DBG′=30°,∴旋轉(zhuǎn)角α=30°,根據(jù)對(duì)稱性可知,當(dāng)∠ABG″=60°時(shí),BAG″=90°,也滿足條件此時(shí)旋轉(zhuǎn)角α=150°.

綜上所述旋轉(zhuǎn)角α=30°150°時(shí),BAG′=90°.

②如圖3,連接OF∵四邊形BEFG是正方形的邊長(zhǎng)為,BF′=2,∴當(dāng)α=315°時(shí),AB、F在一條直線上時(shí),AF的長(zhǎng)最大,最大值為+2,此時(shí)α=315°,F

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形紙片OABC的頂點(diǎn)A,C分別在x軸,y軸的正半軸上,將紙片沿過(guò)點(diǎn)C的直線翻折,使點(diǎn)B恰好落在x軸上的點(diǎn)B處,折痕交AB于點(diǎn)D.若OC=9,,則折痕CD所在直線的解析式為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形擺放在平面直角坐標(biāo)系中,點(diǎn)軸上,點(diǎn)軸上,

,過(guò)點(diǎn)的直線交矩形的邊于點(diǎn),且點(diǎn)不與點(diǎn)、重合,過(guò)點(diǎn),軸于點(diǎn),交軸于點(diǎn).

1)如圖1,若為等腰直角三角形,求直線的函數(shù)解析式;

2)如圖2,過(guò)點(diǎn)軸于點(diǎn),若四邊形是平行四邊形,求直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠一周計(jì)劃每日生產(chǎn)自行車100輛,由于工人實(shí)行輪休,每日上班人數(shù)不一定相等,實(shí)際每日生產(chǎn)量與計(jì)劃量相比情況如下表(以計(jì)劃量為標(biāo)準(zhǔn),增加的車輛數(shù)記為正數(shù),減少的車輛數(shù)記為負(fù)數(shù)):

星期

增減(輛)

1

+3

2

4

+7

5

10

1)生產(chǎn)量最多的一天比生產(chǎn)量最少的一天多生產(chǎn)多少輛?

2)本周總的生產(chǎn)量是多少輛?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠一周計(jì)劃每日生產(chǎn)自行車100輛,由于工人實(shí)行輪休,每日上班人數(shù)不一定相等,實(shí)際每日生產(chǎn)量與計(jì)劃量相比情況如下表(以計(jì)劃量為標(biāo)準(zhǔn),增加的車輛數(shù)記為正數(shù),減少的車輛數(shù)記為負(fù)數(shù)):

星期

增減(輛)

1

+3

2

4

+7

5

10

1)生產(chǎn)量最多的一天比生產(chǎn)量最少的一天多生產(chǎn)多少輛?

2)本周總的生產(chǎn)量是多少輛?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著互聯(lián)網(wǎng)的發(fā)展,農(nóng)副產(chǎn)品也可以網(wǎng)上銷售經(jīng)過(guò)一段時(shí)間的精準(zhǔn)幫扶,小張也建起了自家的網(wǎng)絡(luò)商店(簡(jiǎn)稱網(wǎng)店),他應(yīng)用網(wǎng)店將種植的蘋果和桃子銷往全國(guó)各地.其中蘋果每箱個(gè)以上的公斤左右包郵元;桃子每箱個(gè)公斤左右包郵.請(qǐng)你回答下列問(wèn)題:

1)網(wǎng)購(gòu)一箱蘋果和一箱桃子共應(yīng)支付___________元;

2)某社區(qū)重陽(yáng)節(jié)慰問(wèn)困難居民,計(jì)劃在這家網(wǎng)店購(gòu)買箱蘋果和箱桃子,應(yīng)支付的費(fèi)用可表示為______________________元;

3)因?yàn)樗荒唾A存,小麗和兩個(gè)同學(xué)合起來(lái)在這家網(wǎng)店購(gòu)買了兩箱蘋果和一箱桃子,然后平均分配,小麗需支付多錢?她可以分到幾個(gè)蘋果和幾個(gè)桃子?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系中,正方形OABC的頂點(diǎn)O與原點(diǎn)重合,頂點(diǎn)A,C分別在x軸,y軸上,反比例函數(shù)的圖象與正方形的兩邊AB,BC分別交于點(diǎn)M,N,NDx軸,垂足為D,連接OM,ON,MN.下列結(jié)論:①△OCN≌△OAMONMN;③四邊形DAMN與△MON面積相等;④若∠MON45°,MN2,則點(diǎn)C的坐標(biāo)為(0, 1)其中正確結(jié)論的序號(hào)是____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,△ABC的位置如圖所示(每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正方形)。

(1)將△ABC沿x軸方向向左平移6個(gè)單位,畫出平移后得到的△A1B1C1

(2)將△ABC繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的△AB2C2,并直接寫出點(diǎn)B2、C2的坐標(biāo);

(3)在第(2)問(wèn)中,點(diǎn)B旋轉(zhuǎn)到點(diǎn)B2的過(guò)程中運(yùn)動(dòng)的路徑長(zhǎng)是_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)如圖1,將矩形ABCD折疊,使BC落在對(duì)角線BD上,折痕為BE,點(diǎn)C落在點(diǎn)C'處,若∠ADB=46°,則∠DBE的度數(shù)為______.

(2)小明手中有一張矩形紙片ABCD,AB=4,AD=9

(畫一畫)

如圖2,點(diǎn)E在這張矩形紙片的邊AD上,將紙片折疊,使AB落在CE所在直線上,折痕設(shè)為MN(點(diǎn)M,N分別在邊AD,BC),利用直尺和圓規(guī)畫出折痕MN(不寫作法,保留作圖痕跡,并用黑色水筆把線段描清楚);

(算一算)

如圖3,點(diǎn)F在這張矩形紙片的邊BC上,將紙片折疊,使FB落在射線FD上,折痕為GF,點(diǎn)AB分別落在點(diǎn)A',B'處,若AG=,求B'D的長(zhǎng);

查看答案和解析>>

同步練習(xí)冊(cè)答案