【題目】(本題滿分10分)一幢房屋的側(cè)面外墻壁的形狀如圖所示,它由等腰三角形OCD和矩形ABCD組成,∠OCD=25°,外墻壁上用涂料涂成顏色相同的條紋,其中一塊的形狀是四邊形EFGH,測得FG∥EH,GH=2.6m,∠FGB=65°。
(1)求證:GF⊥OC;
(2)求EF的長(結(jié)果精確到0.1m)。
(參考數(shù)據(jù):sin25°=cos65°≈0.42,cos25°=sin65°≈0.91)
【答案】(1)在四邊形BCFG中,∠GFC=360°-90°-65°-(90°+25°)=90°
則GF⊥OC
(2)如圖,作FM∥GH交EH與M,則有平行四邊形FGHM,
∴FM=GH=2.6m,∠EFM=25°
∵FG∥EH,GF⊥OC
∴EH⊥OC
在Rt△EFM中:
EF=FM·cos25°≈2.6×0.91=2.4m
【解析】
試題(1)根據(jù) 四邊形是矩形, 得出,即可得出答案.
(2)根據(jù)矩形的判定得出,再利用解直角三角形的知識得出的長.
試題解析:(1)證明:CD與FG交于點(diǎn)M,
∵,四邊形ABCD是矩形,
∴
∴GF⊥CO;
(2)作GN⊥EH于點(diǎn)N,
∴四邊形ENGF是矩形;
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解某校學(xué)生的身高狀況,隨機(jī)對該校男生、女生的身高進(jìn)行抽樣調(diào)查.已知抽取的樣本中,男生、女生的人數(shù)相同,根據(jù)所得數(shù)據(jù)繪制如圖所示的統(tǒng)計圖表:
組別 | 身高(cm) |
A | x<150 |
B | 150≤x<155 |
C | 155≤x<160 |
D | 160≤x<165 |
E | x≥165 |
已知女生身高在A組的有8人,根據(jù)圖表中提供的信息,回答下列問題:
(1)男生身高的中位數(shù)落在 組(填組別字母序號);
(2)在樣本中,身高在150≤x<155之間的人數(shù)共有 人,身高人數(shù)最多的在 組(填組別序號);
(3)已知該校共有男生400人、女生420人,請估計身高不足160cm的學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°, CD⊥AB于點(diǎn)D,∠A=30°,BD=1.5cm ,則AB=______cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在等腰Rt△ABC中,∠BAC=90°,點(diǎn)E在AC上(且不與點(diǎn)A、C重合).在△ABC的外部作等腰Rt△CED,使∠CED=90°,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF.
(1)求證:△AEF是等腰直角三角形;
(2)如圖2,將△CED繞點(diǎn)C逆時針旋轉(zhuǎn),當(dāng)點(diǎn)E在線段BC上時,連接AE,求證:AF=AE;
(3)如圖3,將△CED繞點(diǎn)C繼續(xù)逆時針旋轉(zhuǎn),當(dāng)平行四邊形ABFD為菱形,且△CED在△ABC的下方時,若AB=2,CE=2,求線段AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠ABC=60°,AD、CE分別平分∠BAC、∠ACB,
(1)求∠AOC的度數(shù)
(2)連接BO,試說明BO平分∠ABC
(3)判斷AC、AE、CD的關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC=10,在△DCE中,∠DCE=90°,DC=EC=6,點(diǎn)D在線段AC上,點(diǎn)E在線段BC的延長線上.將△DCE繞點(diǎn)C旋轉(zhuǎn)60°得到△D′CE′(點(diǎn)D的對應(yīng)點(diǎn)為點(diǎn)D′,點(diǎn)E的對應(yīng)點(diǎn)為點(diǎn)E′),連接AD′、BE′,過點(diǎn)C作CN⊥BE′,垂足為N,直線CN交線段AD′于點(diǎn)M,則MN的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,A(0,4),B(﹣3,0),C(2,0),D為B點(diǎn)關(guān)于AC的對稱點(diǎn),反比例函數(shù)y= 的圖象經(jīng)過D點(diǎn).
(1)證明四邊形ABCD為菱形;
(2)求此反比例函數(shù)的解析式;
(3)已知在y=的圖象(x>0)上一點(diǎn)N,y軸正半軸上一點(diǎn)M,且四邊形ABMN是平行四邊形,求M點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點(diǎn)A和點(diǎn)B(0,﹣1),拋物線y=x2+bx+c經(jīng)過點(diǎn)B,與直線l的另一個交點(diǎn)為C(4,n).
(1)求n的值和拋物線的解析式;
(2)點(diǎn)D在拋物線上,DE∥y軸交直線l于點(diǎn)E,點(diǎn)F在直線l上,且四邊形DFEG為矩形(如圖2),設(shè)點(diǎn)D的橫坐標(biāo)為t(0<t<4),矩形DFEG的周長為p,求p與t的函數(shù)關(guān)系式以及p的最大值;
(3)將△AOB繞平面內(nèi)某點(diǎn)M旋轉(zhuǎn)90°或180°,得到△A1O1B1,點(diǎn)A、O、B的對應(yīng)點(diǎn)分別是點(diǎn)A1、O1、B1.若△A1O1B1的兩個頂點(diǎn)恰好落在拋物線上,那么我們就稱這樣的點(diǎn)為“落點(diǎn)”,請直接寫出“落點(diǎn)”的個數(shù)和旋轉(zhuǎn)180°時點(diǎn)A1的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC 和△BDE 都是等邊三角形,A、B、D 三點(diǎn)共線.下列結(jié)論:①AB=CD;②BF=BG;③HB 平分∠AHD;④∠AHC=60°,⑤△BFG 是等邊三角形.其中正確的有____________(只填序號).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com