【題目】如圖,在平面直角坐標系中,邊長不等的正方形依次排列,每個正方形都有一個頂點落在函數(shù)y=x的圖象上,從左向右依次記為A1、A2、A3、…、An,已知第1個正方形中的一個頂點A1的坐標為(1,1),則點A2015的縱坐標為( )
A.2015B.2014C.22014D.22015
【答案】C
【解析】
根據(jù)直線解析式可知直線與x軸的夾角為45°,從而得到直線、正方形的邊與x軸圍成的三角形是等腰直角三角形,根據(jù)點A1的坐標為(1,1),可依次求出正方形的邊長,并得到點坐標的變化規(guī)律.
由函數(shù)y=kx的圖像的性質可得直線與x軸的夾角為45°,
∴直線、正方形的邊與x軸圍成的三角形是等腰直角三角形,
∵點A1的坐標為(1,1),
∴第一個正方形的邊長為1,第二個正方形的邊長為1+1=2,
∴點A2的坐標是(2,2),
∵第二個正方形的邊長為2,
∴第三個正方形的邊長為,
∴點A3的坐標是(,),
同理可求:
點A4的坐標是(,),
…
∴點An的坐標是(,),
∴點A2015的坐標是(,),
∴點A2015的縱坐標為,
故選C.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AD是△ABC的角平分線,DE,DF分別是△ABD和△ACD的高,得到下面四個結論:①OA=OD;②AD⊥EF;③當∠BAC=90°時,四邊形AEDF是正方形;④AE2+DF2=AF2+DE2.其中正確的是_________.(填序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場將每件進價為80元的某種商品原來按每件100元出售,一天可售出100件.后來經(jīng)過市場調查,發(fā)現(xiàn)這種商品單價每降低1元,其銷量可增加10件.
(1)求商場經(jīng)營該商品原來一天可獲利潤多少元?
(2)設后來該商品每件降價x元,,商場一天可獲利潤y元.
①若商場經(jīng)營該商品一天要獲利潤2160元,則每件商品應降價多少元?
②求出y與x之間的函數(shù)關系式,結合題意寫出當x取何值時,商場獲利潤不少于2160元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,,連結AC,過點C作直線l∥AB,點P是直線l上的一個動點,直線PA與⊙O交于另一點D,連結CD,設直線PB與直線AC交于點E.
(1)求∠BAC的度數(shù);
(2)當點D在AB上方,且CD⊥BP時,求證:PC=AC;
(3)在點P的運動過程中
①當點A在線段PB的中垂線上或點B在線段PA的中垂線上時,求出所有滿足條件的∠ACD的度數(shù);
②設⊙O的半徑為6,點E到直線l的距離為3,連結BD,DE,直接寫出△BDE的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知一次函數(shù)y=2x+a與y=-x+b的圖象都經(jīng)過點A(-2,0)且與y軸分別交于B,C兩點
(1)分別求出這兩個一次函數(shù)的解析式
(2)求△ABC的面積
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,對角線AC,BD相交于點O,AB=5,AC=6,BD=8.
(1)求證:四邊形ABCD是菱形;
(2)過點A作AH⊥BC于點H,求AH的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是等邊三角形,D為BC邊上一個動點(D與B、C均不重合),AD=AE,∠DAE=60°,連接CE.
(1)求證:△ABD≌△ACE;
(2)若AB=2,當四邊形ADCE的周長取最小值時,求BD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABE,AB、AE的垂直平分線m1、m2分別交BE于點C、D,且BC=CD=DE.
(1)求證:△ACD是等邊三角形;
(2)求∠BAE的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com