【題目】如圖,點O是菱形ABCD對角線的交點,點E在BO上,EF垂直平分AB,垂足為F.
(1)求證:△BEF ∽△DCO;
(2)若AB=10,AC=12,求線段EF的長.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2017浙江省湖州市,第23題,10分)湖州素有魚米之鄉(xiāng)之稱,某水產(chǎn)養(yǎng)殖大戶為了更好地發(fā)揮技術(shù)優(yōu)勢,一次性收購了20000kg淡水魚,計劃養(yǎng)殖一段時間后再出售.已知每天放養(yǎng)的費用相同,放養(yǎng)10天的總成本為30.4萬元;放養(yǎng)20天的總成本為30.8萬元(總成本=放養(yǎng)總費用+收購成本).
(1)設(shè)每天的放養(yǎng)費用是a萬元,收購成本為b萬元,求a和b的值;
(2)設(shè)這批淡水魚放養(yǎng)t天后的質(zhì)量為m(kg),銷售單價為y元/kg.根據(jù)以往經(jīng)驗可知:m與t的函數(shù)關(guān)系為;y與t的函數(shù)關(guān)系如圖所示.
①分別求出當(dāng)0≤t≤50和50<t≤100時,y與t的函數(shù)關(guān)系式;
②設(shè)將這批淡水魚放養(yǎng)t天后一次性出售所得利潤為W元,求當(dāng)t為何值時,W最大?并求出最大值.(利潤=銷售總額﹣總成本)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△AOB和△COD均為等腰直角三角形,∠AOB=∠COD=90°,AO=4,CO=2,接連接AD,BC、點H為BC中點,連接OH.
(1)如圖1所示,求證:OH=AD且OH⊥AD;
(2)將△COD繞點O旋轉(zhuǎn)到圖2所示位置時,線段OH與AD又有怎樣的關(guān)系,證明你的結(jié)論;
(3)請直接寫出線段OH的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的兩邊OA,OC分別在x軸和y軸上,并且OA=5,OC=3.若把矩形OABC繞著點O逆時針旋轉(zhuǎn),使點A恰好落在BC邊上的A1處,則點C的對應(yīng)點C1的坐標(biāo)為( 。
A. (﹣) B. (﹣) C. (﹣) D. (﹣)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】通過類比聯(lián)想、引申拓展研究典型題目,可達(dá)到解一題知一類的目的。下面是一個案例,請補充完整。
原題:如圖1,點E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,連接EF,則EF=BE+DF,試說明理由。
(1)思路梳理
∵AB=CD,
∴把△ABE繞點A逆時針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合。
∵∠ADC=∠B=90°,
∴∠FDG=180°,點F、D、G共線。
根據(jù) ,易證△AFG≌ ,得EF=BE+DF。
(2)類比引申
如圖2,四邊形ABCD中,AB=AD,∠BAD=90°,點E、F分別在邊BC、CD上,∠EAF=45°。若∠B、∠D都不是直角,則當(dāng)∠B與∠D滿足等量關(guān)系 時,仍有EF=BE+DF。
(3)聯(lián)想拓展
如圖3,在△ABC中,∠BAC=90°,AB=AC,點D、E均在邊BC上,且∠DAE=45°。猜想BD、DE、EC應(yīng)滿足的等量關(guān)系,并寫出推理過程。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知水龍頭噴水的初始速度v0可以分解為橫向初始速度vx和縱向初始速度vy,θ是水龍頭的仰角,且.圖2是一個建在斜坡上的花圃場地的截面示意圖,水龍頭的噴射點A在山坡的坡頂上(噴射點離地面高度忽略不計),坡頂?shù)你U直高度OA為15米,山坡的坡比為.離開水龍頭后的水(看成點)獲得初始速度v0米/秒后的運動路徑可以看作是拋物線,點M是運動過程中的某一位置.忽略空氣阻力,實驗表明:M與A的高度之差d(米)與噴出時間t(秒)的關(guān)系為;M與A的水平距離為米.已知該水流的初始速度為15米/秒,水龍頭的仰角θ為.
(1)求水流的橫向初始速度vx和縱向初始速度vy;
(2)用含t的代數(shù)式表示點M的橫坐標(biāo)x和縱坐標(biāo)y,并求y與x的關(guān)系式(不寫x的取值范圍);
(3)水流在山坡上的落點C離噴射點A的水平距離是多少米?若要使水流恰好噴射到坡腳B處的小樹,在相同仰角下,則需要把噴射點A沿坡面AB方向移動多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知Rt△ABC中,∠C=90°,∠ABC=30°,AC=1.將Rt△ABC繞點A逆時針旋轉(zhuǎn)15°后,得到Rt△AB'C',其中點B運動的路徑為弧BB',那么圖中陰影部分的面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線:與x軸交于A、B兩點,與y軸交于點C.已知點A的坐標(biāo)為(﹣1,0),點O為坐標(biāo)原點,OC=3OA,拋物線的頂點為G.
(1)求出拋物線的解析式,并寫出點G的坐標(biāo);
(2)如圖2,將拋物線向下平移k(k>0)個單位,得到拋物線,設(shè)與x軸的交點為、,頂點為,當(dāng)△是等邊三角形時,求k的值:
(3)在(2)的條件下,如圖3,設(shè)點M為x軸正半軸上一動點(介于O與B之間),過點M作x軸的垂線分別交拋物線、于P、Q兩點,是否存在M點,使得以A、Q、M為頂點的三角形與以P、M、B為頂點的三角形相似,若存在,求出點M的坐標(biāo):若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在陽光大課間活動中,某校開展了立定跳遠(yuǎn)、實心球、長跑等體育活動,為了了解九年一班學(xué)生的立定跳遠(yuǎn)成績的情況,對全班學(xué)生的立定跳遠(yuǎn)測試成績進行統(tǒng)計,并繪制了以下不完整的頻數(shù)分布直方圖和扇形圖,根據(jù)圖中信息解答下列問題.
(1)求九年一班學(xué)生總?cè)藬?shù),并補全頻數(shù)分布直方圖(標(biāo)注頻數(shù));
(2)求2.05≤a<2.25成績段在扇形統(tǒng)計圖中對應(yīng)的圓心角度數(shù);
(3)直接寫出九年一班學(xué)生立定跳遠(yuǎn)成績的中位數(shù)所在的成績段;
(4)九年一班在2.25≤a<2.45成績段中有男生3人,女生2人,現(xiàn)要從這5人中隨機抽取2人參加學(xué)校運動會,請用列表法或樹狀圖法求出恰好抽到一男一女的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com