【題目】如圖1,△ABC和△DEF中,AB=AC,DE=DF,∠A=∠D.

(1)求證:;

(2)由(1)中的結(jié)論可知,等腰三角形ABC中,當頂角∠A的大小確定時,它的對邊(即底邊BC)與鄰邊(即腰AB或AC)的比值也就確定,我們把這個比值記作T(A),即T(A)==,如T(60°)=1.

①理解鞏固:T(90°)= ,T(120°)= ,若α是等腰三角形的頂角,則T(α)的取值范圍是

②學以致用:如圖2,圓錐的母線長為9,底面直徑PQ=8,一只螞蟻從點P沿著圓錐的側(cè)面爬行到點Q,求螞蟻爬行的最短路徑長(精確到0.1).

(參考數(shù)據(jù):T(160°)≈1.97,T(80°)≈1.29,T(40°)≈0.68)

【答案】(1)證明見解析;(2);;0<T(α)<2;11.6.

【解析】

試題分析:(1)證明△ABC∽△DEF,根據(jù)相似三角形的性質(zhì)解答即可;

(2)①根據(jù)等腰直角三角形的性質(zhì)和等腰三角形的性質(zhì)進行計算即可;

②根據(jù)圓錐的側(cè)面展開圖的知識和扇形的弧長公式計算,得到扇形的圓心角,根據(jù)T(A)的定義解答即可.

試題解析:(1)∵AB=AC,DE=DF,∴,又∵∠A=∠D,∴△ABC∽△DEF,∴

(2)①如圖1,∠A=90°,AB=AC,則=,∴T(90°)=,如圖2,∠A=90°,AB=AC,作AD⊥BC于D,則∠B=60°,∴BD=AB,∴BC=AB,∴T(120°)=;

∵AB﹣AC<BC<AB+AC,∴0<T(α)<2,故答案為:;0<T(α)<2;

②∵圓錐的底面直徑PQ=8,∴圓錐的底面周長為8π,即側(cè)面展開圖扇形的弧長為8π,設扇形的圓心角為n°,則=8π,解得,n=160,∵T(80°)≈1.29,∴螞蟻爬行的最短路徑長為1.29×9≈11.6.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】因式分解:2a2﹣8=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠BAC=120°,AE=BE,D為EC中點.
(1)求∠CAE的度數(shù);
(2)求證:△ADE是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于一個矩形ABCD及⊙M給出如下定義:在同一平面內(nèi),如果矩形ABCD的四個頂點到⊙M上一點的距離相等,那么稱這個矩形ABCD是⊙M的“伴侶矩形”.如圖,在平面直角坐標系xOy中,直線l:交x軸于點M,⊙M的半徑為2,矩形ABCD沿直線運動(BD在直線l上),BD=2,AB∥y軸,當矩形ABCD是⊙M的“伴侶矩形”時,點C的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等邊△ABC的邊長為6,AD是BC邊上的中線,M是AD上的動點,E是AC邊上一點,若AE=2,EM+CM的最小值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2018年黑龍江省地區(qū)生產(chǎn)總值實現(xiàn)15083億元,用科學記數(shù)法表示15083億元為_____元.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 (2016鎮(zhèn)江)如圖1,一次函數(shù)y=kx﹣3(k0)的圖象與y軸交于點A,與反比例函數(shù)(x0)的圖象交于點B(4,b).

(1)b= ;k=

(2)點C是線段AB上的動點(于點A、B不重合),過點C且平行于y軸的直線l交這個反比例函數(shù)的圖象于點D,求OCD面積的最大值;

(3)將(2)中面積取得最大值的OCD沿射線AB方向平移一定的距離,得到O′C′D′,若點O的對應點O′落在該反比例函數(shù)圖象上(如圖2),則點D′的坐標是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】方程x24x的根是( 。

A.x0B.x4C.x±2D.x0x4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠A=90°,DE是BC的垂直平分線,AD=DE,則∠C的度數(shù)是°.

查看答案和解析>>

同步練習冊答案