【題目】網(wǎng)上購(gòu)物已經(jīng)成為人們常用的一種購(gòu)物方式,售后評(píng)價(jià)特別引人關(guān)注,消費(fèi)者在網(wǎng)店購(gòu)買某種商品后,對(duì)其有

好評(píng)”、“中評(píng)”、“差評(píng)三種評(píng)價(jià),假設(shè)這三種評(píng)價(jià)是等可能的.

(1)小明對(duì)一家網(wǎng)店銷售某種商品顯示的評(píng)價(jià)信息進(jìn)行了統(tǒng)計(jì),并列出了兩幅不完整的統(tǒng)計(jì)圖.

利用圖中所提供的信息解決以下問(wèn)題:

①小明一共統(tǒng)計(jì)了 個(gè)評(píng)價(jià);

②請(qǐng)將圖1補(bǔ)充完整;

③圖2差評(píng)所占的百分比是

(2)若甲、乙兩名消費(fèi)者在該網(wǎng)店購(gòu)買了同一商品,請(qǐng)你用列表格或畫樹狀圖的方法幫助店主求一下兩人中至少有一個(gè)給好評(píng)的概率.

【答案】(1)150;②作圖見(jiàn)解析;③13.3%;(2)

【解析】

1中評(píng)、差評(píng)的人數(shù)除以二者的百分比之和即可得總?cè)藬?shù);用總?cè)藬?shù)減去中評(píng)、差評(píng)的人數(shù)可得好評(píng)的人數(shù),補(bǔ)全條形圖即可;根據(jù)差評(píng)的人數(shù)÷總?cè)藬?shù)×100%即可得差評(píng)所占的百分比;

2)可通過(guò)列表表示出甲、乙對(duì)商品評(píng)價(jià)的所有可能結(jié)果數(shù),根據(jù)概率公式即可計(jì)算出兩人中至少有一個(gè)給好評(píng)的概率.

小明統(tǒng)計(jì)的評(píng)價(jià)一共有:(40+20÷1-60%=150(個(gè));

②“好評(píng)一共有150×60%=90(個(gè)),補(bǔ)全條形圖如圖1

2差評(píng)所占的百分比是:×100%=13.3%

2)列表如下:

好,好

好,中

好,差

中,好

中,中

中,差

差,好

差,中

差,差

由表可知,一共有9種等可能結(jié)果,其中至少有一個(gè)給好評(píng)的有5種,

兩人中至少有一個(gè)給好評(píng)的概率是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在△ABC中,ABAC,∠BACα,點(diǎn)D、E分別在邊ABAC上,ADAE,連接DC,點(diǎn)F、P、G分別為DE、DC、BC的中點(diǎn).

1)觀察猜想:圖1中,線段PFPG的數(shù)量關(guān)系是  ,∠FPG  (用含α的代數(shù)式表示)

2)探究證明:當(dāng)△ADE繞點(diǎn)A旋轉(zhuǎn)到如圖2所示的位置時(shí),小新猜想(1)中的結(jié)論仍然成立,請(qǐng)你證明小新的猜想.

3)拓展延伸:把△ADE繞點(diǎn)A在平面內(nèi)自由旋轉(zhuǎn),若AD2AB6,請(qǐng)直接寫出PF的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線x軸交于點(diǎn)A(-10),B(30),交y軸的正半軸于點(diǎn)C,對(duì)稱軸交拋物線于點(diǎn)D,交x軸與點(diǎn)E,則下列結(jié)論:①2a+b=0;②b+2c>0;③a+b>am+bmm為任意實(shí)數(shù));④一元二次方程有兩個(gè)不相等的實(shí)數(shù)根;⑤當(dāng)△BCD為直角三角形時(shí),a的值有2個(gè);⑥若點(diǎn)P為對(duì)稱軸上的動(dòng)點(diǎn),則有最大值,最大值為.其中正確的有(

A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線經(jīng)過(guò)點(diǎn)A,作AB⊥x軸于點(diǎn)B,將△ABO繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到△CBD.若點(diǎn)B的坐標(biāo)為(2, 0),則點(diǎn)C的坐標(biāo)為(

A.(﹣1B.(﹣2,C.1D.,2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)O是等邊三角形ABC內(nèi)的一點(diǎn),∠AOB=130°,BOC=α.將△BOC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)60°得到△ADC,連接OD.

(1)判斷△COD的形狀,并加以說(shuō)明理由.

(2)若AD=1,OC=,OA=時(shí),求α的度數(shù).

(3)探究:當(dāng)α為多少度時(shí),△AOD是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小杰到學(xué)校食堂買飯,看到AB兩窗口前面排隊(duì)的人一樣多(設(shè)為a人,a8,就站在A窗口隊(duì)伍的后面,過(guò)了2分鐘,他發(fā)現(xiàn)A窗口每分鐘有4人買了飯離開(kāi)隊(duì)伍,B窗口每分鐘有6人買了飯離開(kāi)隊(duì)伍,且B窗口隊(duì)伍后面每分鐘增加5人.

1)此時(shí),若小杰繼續(xù)在A窗口排隊(duì),則他到達(dá)窗口所花的時(shí)間是多少?(用含a的代數(shù)式表示)

2)此時(shí),若小杰迅速?gòu)?/span>A窗口隊(duì)伍轉(zhuǎn)移到B窗口后面重新排隊(duì),且到達(dá)B窗口所花的時(shí)間比繼續(xù)在A窗口排隊(duì)到達(dá)A窗口所花的時(shí)間少,求a的取值范圍.(不考慮其它因素)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是學(xué)生小金家附近的一塊三角形綠化區(qū)的示意圖,為增強(qiáng)體質(zhì),他每天早晨都沿著綠化區(qū)周邊小路AB、BC、CA跑步小路的寬度不計(jì)觀測(cè)得點(diǎn)B在點(diǎn)A的南偏東方向上,點(diǎn)C在點(diǎn)A的南偏東的方向上,點(diǎn)B在點(diǎn)C的北偏西方向上,AC間距離為400問(wèn)小金沿三角形綠化區(qū)的周邊小路跑一圈共跑了多少米?

參考數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,拋物線Cyx2經(jīng)過(guò)變換可得到拋物線C1y1a1xxb1),C1x軸的正半軸交于點(diǎn)A,且其對(duì)稱軸分別交拋物線CC1于點(diǎn)B1、D1.此時(shí)四邊形OB1A1D1恰為正方形:按上述類似方法,如圖2,拋物線C1y1a1xxb1)經(jīng)過(guò)變換可得到拋物線C2y2a2xxb2),C2x軸的正半軸交于點(diǎn)A2,且其對(duì)稱軸分別交拋物線C1、C2于點(diǎn)B2、D2.此時(shí)四邊形OB2A2D2也恰為正方形:按上述類似方法,如圖3,可得到拋物線C3y3a3xxb3)與正方形OB3A3D3,請(qǐng)?zhí)骄恳韵聠?wèn)題:

1)填空:a1  b1  ;

2)求出C2C3的解析式;

3)按上述類似方法,可得到拋物線nynanxxbn)與正方形OBnAnDnn≥1

①請(qǐng)用含n的代數(shù)式直接表示出n的解析式;

②當(dāng)x取任意不為0的實(shí)數(shù)時(shí),試比較y2018y2019的函數(shù)值的大小關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,均為等腰直角三角形,,連結(jié),,且、三點(diǎn)在一直線上,,

1)求證:;

2)求線段的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案