【題目】網(wǎng)上購(gòu)物已經(jīng)成為人們常用的一種購(gòu)物方式,售后評(píng)價(jià)特別引人關(guān)注,消費(fèi)者在網(wǎng)店購(gòu)買某種商品后,對(duì)其有
“好評(píng)”、“中評(píng)”、“差評(píng)”三種評(píng)價(jià),假設(shè)這三種評(píng)價(jià)是等可能的.
(1)小明對(duì)一家網(wǎng)店銷售某種商品顯示的評(píng)價(jià)信息進(jìn)行了統(tǒng)計(jì),并列出了兩幅不完整的統(tǒng)計(jì)圖.
利用圖中所提供的信息解決以下問(wèn)題:
①小明一共統(tǒng)計(jì)了 個(gè)評(píng)價(jià);
②請(qǐng)將圖1補(bǔ)充完整;
③圖2中“差評(píng)”所占的百分比是 ;
(2)若甲、乙兩名消費(fèi)者在該網(wǎng)店購(gòu)買了同一商品,請(qǐng)你用列表格或畫樹狀圖的方法幫助店主求一下兩人中至少有一個(gè)給“好評(píng)”的概率.
【答案】(1)①150;②作圖見(jiàn)解析;③13.3%;(2).
【解析】
(1)①用“中評(píng)”、“差評(píng)”的人數(shù)除以二者的百分比之和即可得總?cè)藬?shù);②用總?cè)藬?shù)減去“中評(píng)”、“差評(píng)”的人數(shù)可得“好評(píng)”的人數(shù),補(bǔ)全條形圖即可;③根據(jù)“差評(píng)”的人數(shù)÷總?cè)藬?shù)×100%即可得“差評(píng)”所占的百分比;
(2)可通過(guò)列表表示出甲、乙對(duì)商品評(píng)價(jià)的所有可能結(jié)果數(shù),根據(jù)概率公式即可計(jì)算出兩人中至少有一個(gè)給“好評(píng)”的概率.
①小明統(tǒng)計(jì)的評(píng)價(jià)一共有:(40+20)÷(1-60%=150(個(gè));
②“好評(píng)”一共有150×60%=90(個(gè)),補(bǔ)全條形圖如圖1:
③圖2中“差評(píng)”所占的百分比是:×100%=13.3%;
(2)列表如下:
好 | 中 | 差 | |
好 | 好,好 | 好,中 | 好,差 |
中 | 中,好 | 中,中 | 中,差 |
差 | 差,好 | 差,中 | 差,差 |
由表可知,一共有9種等可能結(jié)果,其中至少有一個(gè)給“好評(píng)”的有5種,
∴兩人中至少有一個(gè)給“好評(píng)”的概率是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在△ABC中,AB=AC,∠BAC=α,點(diǎn)D、E分別在邊AB、AC上,AD=AE,連接DC,點(diǎn)F、P、G分別為DE、DC、BC的中點(diǎn).
(1)觀察猜想:圖1中,線段PF與PG的數(shù)量關(guān)系是 ,∠FPG= (用含α的代數(shù)式表示)
(2)探究證明:當(dāng)△ADE繞點(diǎn)A旋轉(zhuǎn)到如圖2所示的位置時(shí),小新猜想(1)中的結(jié)論仍然成立,請(qǐng)你證明小新的猜想.
(3)拓展延伸:把△ADE繞點(diǎn)A在平面內(nèi)自由旋轉(zhuǎn),若AD=2,AB=6,請(qǐng)直接寫出PF的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與x軸交于點(diǎn)A(-1,0),B(3,0),交y軸的正半軸于點(diǎn)C,對(duì)稱軸交拋物線于點(diǎn)D,交x軸與點(diǎn)E,則下列結(jié)論:①2a+b=0;②b+2c>0;③a+b>am+bm(m為任意實(shí)數(shù));④一元二次方程有兩個(gè)不相等的實(shí)數(shù)根;⑤當(dāng)△BCD為直角三角形時(shí),a的值有2個(gè);⑥若點(diǎn)P為對(duì)稱軸上的動(dòng)點(diǎn),則有最大值,最大值為.其中正確的有( )
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線經(jīng)過(guò)點(diǎn)A,作AB⊥x軸于點(diǎn)B,將△ABO繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到△CBD.若點(diǎn)B的坐標(biāo)為(2, 0),則點(diǎn)C的坐標(biāo)為( )
A.(﹣1,)B.(﹣2,)C.(,1)D.(,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)O是等邊三角形ABC內(nèi)的一點(diǎn),∠AOB=130°,∠BOC=α.將△BOC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)60°得到△ADC,連接OD.
(1)判斷△COD的形狀,并加以說(shuō)明理由.
(2)若AD=1,OC=,OA=時(shí),求α的度數(shù).
(3)探究:當(dāng)α為多少度時(shí),△AOD是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小杰到學(xué)校食堂買飯,看到A、B兩窗口前面排隊(duì)的人一樣多(設(shè)為a人,a>8),就站在A窗口隊(duì)伍的后面,過(guò)了2分鐘,他發(fā)現(xiàn)A窗口每分鐘有4人買了飯離開(kāi)隊(duì)伍,B窗口每分鐘有6人買了飯離開(kāi)隊(duì)伍,且B窗口隊(duì)伍后面每分鐘增加5人.
(1)此時(shí),若小杰繼續(xù)在A窗口排隊(duì),則他到達(dá)窗口所花的時(shí)間是多少?(用含a的代數(shù)式表示)
(2)此時(shí),若小杰迅速?gòu)?/span>A窗口隊(duì)伍轉(zhuǎn)移到B窗口后面重新排隊(duì),且到達(dá)B窗口所花的時(shí)間比繼續(xù)在A窗口排隊(duì)到達(dá)A窗口所花的時(shí)間少,求a的取值范圍.(不考慮其它因素)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是學(xué)生小金家附近的一塊三角形綠化區(qū)的示意圖,為增強(qiáng)體質(zhì),他每天早晨都沿著綠化區(qū)周邊小路AB、BC、CA跑步小路的寬度不計(jì)觀測(cè)得點(diǎn)B在點(diǎn)A的南偏東方向上,點(diǎn)C在點(diǎn)A的南偏東的方向上,點(diǎn)B在點(diǎn)C的北偏西方向上,AC間距離為400米問(wèn)小金沿三角形綠化區(qū)的周邊小路跑一圈共跑了多少米?
參考數(shù)據(jù):,
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,拋物線C:y=x2經(jīng)過(guò)變換可得到拋物線C1:y1=a1x(x﹣b1),C1與x軸的正半軸交于點(diǎn)A,且其對(duì)稱軸分別交拋物線C、C1于點(diǎn)B1、D1.此時(shí)四邊形OB1A1D1恰為正方形:按上述類似方法,如圖2,拋物線C1:y1=a1x(x﹣b1)經(jīng)過(guò)變換可得到拋物線C2:y2=a2x(x﹣b2),C2與x軸的正半軸交于點(diǎn)A2,且其對(duì)稱軸分別交拋物線C1、C2于點(diǎn)B2、D2.此時(shí)四邊形OB2A2D2也恰為正方形:按上述類似方法,如圖3,可得到拋物線C3:y3=a3x(x﹣b3)與正方形OB3A3D3,請(qǐng)?zhí)骄恳韵聠?wèn)題:
(1)填空:a1= ,b1= ;
(2)求出C2與C3的解析式;
(3)按上述類似方法,可得到拋物線n:yn=anx(x﹣bn)與正方形OBnAnDn(n≥1)
①請(qǐng)用含n的代數(shù)式直接表示出n的解析式;
②當(dāng)x取任意不為0的實(shí)數(shù)時(shí),試比較y2018與y2019的函數(shù)值的大小關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,和均為等腰直角三角形,,連結(jié),,且、、三點(diǎn)在一直線上,,.
(1)求證:;
(2)求線段的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com