【題目】如圖,在ABC中,AB=AC,∠B=30°,點(diǎn)D從點(diǎn)B出發(fā),沿B→C方向運(yùn)動(dòng)到點(diǎn)C(D不與B,C重合),連接AD,作∠ADE=30°DE交線段AC于點(diǎn)E.設(shè)∠B4D=x°,∠AED=y°.

(1)當(dāng)BD=AD時(shí),求∠DAE的度數(shù);

(2)yx的關(guān)系式;

(3)當(dāng)BD=CE時(shí),求x的值.

【答案】解:(190°.(2) y=30+x.(3) x=y-30=45.

【解析】

1)根據(jù)等腰三角形的性質(zhì)得到∠C=B=30°,∠BAD=B =30°,利用三角形的內(nèi)角和計(jì)算出∠BAC=120°,從而可以計(jì)算出∠DAE=90°;

2)利用三角形的內(nèi)角和計(jì)算出∠BAC=120°,從而∠DAE=120°-x°,利用三角形的內(nèi)角和表示∠AED=30°+x°,即y=30+x

3)先需要證明△ABD≌△DCE,得出AD=DE,從而得出∠DAE=AED=y°,利用三角形的內(nèi)角和計(jì)算出y,從而計(jì)算出x.

解:(1)∵AB=AC, B=30°,

∴∠C=B =30°

∴∠BAC=180°-C-B=120°,

BD=AD, B=30°,

∴∠BAD=B =30°,

∴∠DAE=BAC-BAD=90°.

(2) AB=AC, B=30°

∴∠C=B =30°,

∴∠BAC=180°-C-B=120°,

∴∠DAE=BAC-BAD=120°-x°

∴∠AED=180°-DAE-ADE=30°+x°,

y=30+x.

(3) ∵∠C=30°, AED=30°+x°,

∴∠EDC=AED-C= x°,

∴∠EDC=BAD,

又∵∠C=B

BD=CE,

∴△ABD≌△DCE(AAS),

AD=DE,

∴∠DAE=AED=y°

∵∠DAE+AED+ADE=180°

2y°+30°=180°

y°=75°,

x=y-30=45.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一個(gè)20米高的樓頂上有一信號(hào)塔DC,某同學(xué)為了測(cè)量信號(hào)塔的高度,在地面的A處測(cè)得信號(hào)塔下端D的仰角為30°,然后他正對(duì)塔的方向前進(jìn)了8米到達(dá)B處,又測(cè)得信號(hào)塔頂端C的仰角為45°,CEAB于點(diǎn)EE、BA在一條直線上.則信號(hào)塔CD的高度為(  )

A. 20 B. (208) C. (2028) D. (2020)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在利用正六面體骰子進(jìn)行頻率估計(jì)概率的實(shí)驗(yàn)中,小閩同學(xué)統(tǒng)計(jì)了某一結(jié)果朝上的頻率,繪出的統(tǒng)計(jì)圖如圖所示,則符合圖中情況的可能是( )

A. 朝上的點(diǎn)數(shù)是6的概率B. 朝上的點(diǎn)數(shù)是偶數(shù)的概率

C. 朝上的點(diǎn)數(shù)是小于4的概率D. 朝上的點(diǎn)數(shù)是3的倍數(shù)的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,點(diǎn)A,B,C,D的坐標(biāo)分別是(1,7),(1,1),(4,1),(6,1).若以C,D,E(E在格點(diǎn)上)為頂點(diǎn)的三角形與ABC相似,則點(diǎn)E的坐標(biāo)不可能是( )

A. (6,0) B. (4,2) C. (6,5) D. (6,3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=kx+8k0)交y軸于點(diǎn)A,交x軸于點(diǎn)B.將△AOB關(guān)于直線AB翻折得到△APB.過點(diǎn)AACx軸交線段BP于點(diǎn)C,在AC上取點(diǎn)D,且點(diǎn)D在點(diǎn)C的右側(cè),連結(jié)BD

1)求證:AC=BC

2)若AC=10

①求直線AB的表達(dá)式.

②若△BCD是以BC為腰的等腰三角形,求AD的長(zhǎng).

3)若BD平分∠OBP的外角,記△APC面積為S1,△BCD面積為S2,且=,則的值為______(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,AB⊙O的直徑,PAB延長(zhǎng)線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P⊙O的切線,切點(diǎn)為C,連接AC,BC,作∠APC的平分線交AC于點(diǎn)D

下列結(jié)論正確的是 (寫出所有正確結(jié)論的序號(hào))

①△CPD∽△DPA;

∠A=30°,則PC=BC

∠CPA=30°,則PB=OB;

無論點(diǎn)PAB延長(zhǎng)線上的位置如何變化,∠CDP為定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知: A 0,1 , B 2, 0 , C 4, 3

1)求ABC 的面積;

2)設(shè)點(diǎn) P 在坐標(biāo)軸上,且ABC ABP 的面積相等,直接寫出 P 的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某個(gè)體經(jīng)營(yíng)戶了解到有一種盒裝商品能暢銷市場(chǎng),就用4萬元購進(jìn)這種商品,面市后果然供不應(yīng)求,他又用8.8萬元購進(jìn)了第二批這種商品,所購數(shù)量是第一批購進(jìn)量的2倍,但每盒單價(jià)漲了4元,他在銷售這種盒裝商品時(shí)每盒定價(jià)都是56元,最后剩下的150盒按八折銷售,很快售完,在這兩筆生意中,這位個(gè)體經(jīng)營(yíng)戶共贏利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,∠A=70°,將平行四邊形ABCD繞點(diǎn)B順時(shí)針旋轉(zhuǎn)到平行四邊形A1BC1D1的位置,此時(shí)C1D1恰好經(jīng)過點(diǎn)C,則∠ABA1=______°.

查看答案和解析>>

同步練習(xí)冊(cè)答案