如圖,直線y=
1
2
x+4交x軸于點A,交y軸于點B,如果點C在第四象限,若∠ABC=Rt∠,且AB=BC,則點C的坐標為
 
,此時固定點C,將直線AB左右或上下平移,平移后的直線為y=
1
2
x+m.當△ABC為直角三角形時,m的值
 
考點:一次函數(shù)圖象與幾何變換
專題:計算題
分析:先確定A(-8,0)、B(0,4),過C作CD垂直y軸于D,如圖,再證明△AOB≌△BDC,得到CD=OB=4,BD=OA=8,則OD=BD-OB=4,所以C((4,-4),然后利用待定系數(shù)法確定直線BC的解析式為y=-2x+4,則可確定它與x軸的交點坐標為(2,0),利用平行線的性質得到當AB向右平移,經過點(2,0)時,即AB向右移動10個單位時成直角三角形,此時
1
2
×2+m=0,解得m=-1.
解答:解:直線y=
1
2
x+4交x軸于點A,則A(-8,0),交y軸于點B,則B(0,4),
過C作CD垂直y軸于D,如圖,
∵∠BAC=90°,
∴∠AOB=∠BCD,
在△AOB和△BDC中
∠AOB=∠BDC
∠ABO=∠BCD
AB=BC

∴△AOB≌△BDC,
∴CD=OB=4,BD=OA=8,
∴OD=BD-OB=4,
∴C((4,-4).
設直線BC的解析式為y=kx+b,把B(0,4)、C(4,-4)代入得
b=4
4k+b=-4
,解得
k=-2
b=4
,則直線BC的解析式為y=-2x+4,它與x軸的交點坐標為(2,0),
∴當AB向右平移,經過點(2,0)時,即AB向右移動10個單位時成直角三角形,此時
1
2
×2+m=0,解得m=-1.
故答案為(4,-4),-1.
點評:本題考查了一次函數(shù)圖象與幾何變換:直線y=kx+b向下平移m(m>0)個單位的解析式為y=kx+b+m;直線y=kx+b向右平移n(n>0)個單位的解析式為y=k(x-n)+b.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

平面直角坐標系中,一正方形的一邊上的兩個頂點坐標分別為A(1,0),B(3,0),求另外兩個頂點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

先化簡,再求值:4a2-2a-6-3(2a2-a-5),其中a=-1.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在直角坐標系中,矩形OABC的頂點A、B在雙曲線y=
k
x
(x>0)上,BC與x軸交于點D.若點A的坐標為(1,2),則點B的坐標為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在矩形ABCD中,對角線AC,BD相交于點O,AE⊥BD于點E,且BE:ED=1:3.若BC=3,則AE的長為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

根據(jù)如圖所示的計算程序,若x=1,則y=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC的面積是
5
12
m2,E,F(xiàn)是BC邊上的三等分點,D是AE的中點,則△ADF面積為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

規(guī)定符號[a]表示實數(shù)a的整數(shù)部分,[
1
3
]=0,[4.15]=4.按此規(guī)定[
11
+2]的值為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

下列分解因式正確的是(  )
A、a2+6a+5=a(a+6)+5
B、(a-b)2+4ab=(a+b)2
C、(a+1)(a+2)=a2+3a+2
D、a3b-ab=ab(a2-1)

查看答案和解析>>

同步練習冊答案