【題目】如圖,在ABCD中,BE⊥AC,垂足E在CA的延長線上,DF⊥AC,垂足F在AC的延長線上,求證:AE=CF.

【答案】證明:∵四邊形ABCD是平行四邊形, ∴AB∥CD,AB=CD,
∴∠BAC=∠DCA,
∴180°﹣∠BAC=180°﹣∠DCA,
∴∠EAB=∠FAD,
∵BE⊥AC,DF⊥AC,
∴∠BEA=∠DFC=90°,
在△BEA和△DFC中, ,
∴△BEA≌△DFC(AAS),
∴AE=CF
【解析】由平行四邊形的性質得出AB∥CD,AB=CD,由平行線的性質得出得出∠BAC=∠DCA,證出∠EAB=∠FAD,∠BEA=∠DFC=90°,由AAS證明△BEA≌△DFC,即可得出結論.
【考點精析】解答此題的關鍵在于理解平行四邊形的性質的相關知識,掌握平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線 軸交 兩點,直線 與拋物線交于A、C兩點,其中C點的橫坐標為2.

(1)求拋物線及直線AC的函數(shù)表達式;
(2)若P點是線段AC上的一個動點,過P點作 軸的平行線交拋物線于F點,求線段PF長度的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(2015攀枝花)某超市銷售有甲、乙兩種商品,甲商品每件進價10元,售價15元;乙商品每件進價30元,售價40元.

(1)若該超市一次性購進兩種商品共80件,且恰好用去1600元,問購進甲、乙兩種商品各多少件?

(2)若該超市要使兩種商品共80件的購進費用不超過1640元,且總利潤(利潤=售價﹣進價)不少于600元.請你幫助該超市設計相應的進貨方案,并指出使該超市利潤最大的方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,E是ABCD的邊AD的中點,連接CE并延長交BA的延長線于F,若CD=6,求BF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著信息技術的迅猛發(fā)展,人們去商場購物的支付方式更加多樣、便捷.某校數(shù)學興趣小組設計了一份調查問卷,要求每人選且只選一種你最喜歡的支付方式.現(xiàn)將調查結果進行統(tǒng)計并繪制如圖所示的兩幅不完整的統(tǒng)計圖.

請結合圖中所給出的信息解答下列問題:

1)本次抽樣調查的樣本容量是

2)補全條形統(tǒng)計圖;

3)若某商場天內有人次支付記錄,估計選擇微信支付的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,且AD=12cm.點P從點A出發(fā),以3cm/s的速度在射線AD上運動;同時,點Q從點C出發(fā),以1cm/s的速度在射線CB上運動.運動時間為t,當t=______秒(s)時,點P、Q、C、D構成平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】《九章算術》是中國傳統(tǒng)數(shù)學重要的著作之一,奠定了中國傳統(tǒng)數(shù)學的基本框架.其中第九卷《勾股》主要講述了以測量問題為中心的直角三角形三邊互求,之中記載了一道有趣的“引葭赴岸”問題:今有池方一丈,葭生其中央,出水一尺引葭赴岸,適與岸齊.問水深、葭長各幾何?”

譯文:“今有正方形水池邊長為1丈,有棵蘆葦生長在它長出水面的部分為1將蘆葦?shù)闹醒,向池岸牽引,恰好與水岸齊接問水深,蘆葦?shù)拈L度分別是多少尺?”(備注:1=10)

如果設水深為,那么蘆葦長用含的代數(shù)式可表示為_______尺,根據(jù)題意,可列方程為______________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了分析九年級學生藝術考試的成績,隨機抽查了兩個班級的各5名學生的成績,它們分別是:

九(1)班:96,9294,97,96

九(2)班:9098,97,98,92

通過數(shù)據(jù)分析,列表如下:

1

2)計算兩個班級所抽取的學生藝術成績的方差,判斷哪個班學生藝術成績比較穩(wěn)定.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:已知在平面直角坐標系中,ABC的位置如圖所示:

1)請寫出點A、B、C三點的坐標.

2)將ABC向右平移6個單位,再向上平移2個單位,請在圖中作出平移后的ABC',并寫出它們的坐標:A'(  ),B'(  ),C'(  ).

查看答案和解析>>

同步練習冊答案