【題目】如圖:已知在平面直角坐標(biāo)系中,△ABC的位置如圖所示:
(1)請寫出點(diǎn)A、B、C三點(diǎn)的坐標(biāo).
(2)將△ABC向右平移6個(gè)單位,再向上平移2個(gè)單位,請?jiān)趫D中作出平移后的△A'B'C',并寫出它們的坐標(biāo):A'( ),B'( ),C'( ).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電器超市銷售每臺(tái)進(jìn)價(jià)分別為200元、170元的A、B兩種型號的電風(fēng)扇,下表是近兩周的銷售情況:
(進(jìn)價(jià)、售價(jià)均保持不變,利潤 = 銷售收入-進(jìn)貨成本)
(1)求A、B兩種型號的電風(fēng)扇的銷售單價(jià);
(2)若超市準(zhǔn)備用不多于5400元的金額再采購這兩種型號的電風(fēng)扇共30臺(tái),求A種型號的電風(fēng)扇最多能采購多少臺(tái)?
(3)在(2)的條件下,超市銷售完這30臺(tái)電風(fēng)扇能否實(shí)現(xiàn)利潤為1400元的目標(biāo)?若能,請給出相應(yīng)的采購方案;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】校學(xué)生會(huì)對七年級部分學(xué)生的課外閱讀量進(jìn)行了隨機(jī)調(diào)查,整理調(diào)查結(jié)果,并根據(jù)調(diào)查結(jié)果繪制了不完整的圖表,如圖所示:
本數(shù)(本) | 頻數(shù)(人數(shù)) | 頻率 |
5 | a | 0.3 |
6 | 10 | 0.2 |
7 | 20 | b |
8 | 5 | 0.1 |
合計(jì) | c | 1 |
(1)統(tǒng)計(jì)表中的b= ,c= ;請將頻數(shù)分布直方圖補(bǔ)充完整.
(2)所有被調(diào)查學(xué)生課外閱讀的平均本數(shù)為 本,課外閱讀書本數(shù)的中位數(shù)為 本.
(3)若該校七年級共有1200名學(xué)生,估計(jì)該校七年級學(xué)生課外閱讀6本及以下的人數(shù)為 人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車分別從相距480千米的A、B兩地相向而行,乙車出發(fā)1小時(shí)后甲車出發(fā),并以各自的速度勻速行駛,途經(jīng)C地,甲車到達(dá)C地停留1小時(shí),因有事按原路原速返回A地,乙車從B地直達(dá)A地,兩車同時(shí)到達(dá)A地.甲、乙兩車與A地的距離y(千米)與甲車出發(fā)所用的時(shí)間x(小時(shí))的關(guān)系如圖,結(jié)合圖象信息解答下列問題:
(1)圖中數(shù)據(jù)420的含義正確的有 ;(填寫序號)
①乙車出發(fā)時(shí)與A地的距離;
②甲車出發(fā)時(shí)與B地的距離;
③甲車出發(fā)時(shí),乙車與A地的距離;
(2)乙車的速度是 千米/時(shí),a= 小時(shí);甲車的速度是 千米/時(shí),t= 小時(shí).
(3)在甲車到達(dá)C地之前,兩車能否相遇?若能相遇,請求出甲車行駛的時(shí)間;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=6,AC=8,BC=10,P為邊BC上一動(dòng)點(diǎn),PE⊥AB于E,PF⊥AC于F,M為EF中點(diǎn),則AM的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一列快車從甲地駛往乙地,一列慢車從乙地駛往甲地,兩車同時(shí)出發(fā),勻速行駛,設(shè)慢車行駛的時(shí)間x(h),兩車之間的距離為y(km),圖中的折線表示y與x之間的函數(shù)關(guān)系.根據(jù)圖象回答:
(1)甲、乙兩地之間的距離為 ;
(2)兩車同時(shí)出發(fā)后 h相遇;
(3)慢車的速度為 千米/小時(shí);快車的速度為 千米/小時(shí);
(4)線段CD表示的實(shí)際意義是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠B=60°,D、E分別為AB、BC上的點(diǎn),且AE、CD交于點(diǎn)F.
(1)如圖1,若AE、CD為△ABC的角平分線:
①求∠AFD的度數(shù);
②若AD=3,CE=2,求AC的長;
(2)如圖2,若∠EAC=∠DCA=30°,求證:AD=CE.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com