【題目】太陽能熱水器的玻璃吸熱管與太陽光線垂直時,吸收太陽能的效果最佳.如圖,某戶根據(jù)本地區(qū)冬至?xí)r刻太陽光線與地面水平線的夾角(θ)確定玻璃吸熱管的傾斜角(太陽光與玻璃吸熱管垂直).已知:支架CF=100 cm,CD=20 cm,FEADE,若θ=37°,求EF的長.(參考數(shù)據(jù):sin37°≈,cos37°≈,tan37°≈

【答案】EF的長為76 cm

【解析】

地面水平線與吸熱管夾角∠1θ互余,延長EDBC的延長線于點H,則∠H=θ=37°,然后根據(jù)銳角三角函數(shù)的定義即可求出答案.

解:如圖,依題意知,地面水平線與吸熱管夾角∠1θ互余,

延長EDBC的延長線于點H.則H=θ=37°

Rt△CDH中, HC=

HF=HC+CF=+ CF

Rt△EFM中, EF=(+ CF) sin37°≈×=76cm).

: EF的長為76 cm

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】給出下面四個命題,其中真命題的個數(shù)有(

(1)平分弦的直徑垂直于這條弦,并且平分這條弦所對的;

(2)90°的圓周角所對的弦是直徑;

(3)在同圓或等圓中,圓心角的度數(shù)是圓周角的度數(shù)的兩倍;

(4)如下圖,順次連接圓的任意兩條直徑的端點,所得的四邊形一定是矩形.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,BC2ABE,F分別是BC,AD的中點,AE,BF交于點O,連接EF,OC

1)求證:四邊形ABEF是菱形;(2)若BC8,∠ABC60°,求OC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某愛心企業(yè)在政府的支持下投入資金,準(zhǔn)備修建一批室外簡易的足球場和籃球場,供市民免費使用,修建1個足球場和1個籃球場共需8.5萬元,修建2個足球場和4個籃球場共需27萬元.

(1)求修建一個足球場和一個籃球場各需多少萬元?

(2)該企業(yè)預(yù)計修建這樣的足球場和籃球場共20個,投入資金不超過90萬元,求至少可以修建多少個足球場?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,拋物線軸交于點,與軸交于點,將直線繞點逆時針旋轉(zhuǎn)90°,所得直線與軸交于點

1)求直線的函數(shù)解析式;

2)如圖②,若點是直線上方拋物線上的一個動點

①當(dāng)點到直線的距離最大時,求點的坐標(biāo)和最大距離;

②當(dāng)點到直線的距離為時,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y =x+4x軸,y軸分別交于點B,C,點Ax軸負(fù)半軸上,且OA=OB, 拋物線y =ax2+bx+4經(jīng)過A,B,C三點.

1)求拋物線的解析式;

2)點P是第一象限內(nèi)拋物線上的動點,設(shè)點P的橫坐標(biāo)為m,過點PPDBC,垂足為D,用含m的代數(shù)式表示線段PD的長,并求出線段PD的最大值;

3)設(shè)點E為拋物線對稱軸與直線BC的交點,若A,B,E三點到同一直線的距離分別是d1,d2,d3,問是否存在直線l,使得d1= d2=d3? 若存在,請直接寫出d3的值,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解學(xué)生課外閱讀情況,就學(xué)生每周閱讀時間隨機(jī)調(diào)查了部分學(xué)生,調(diào)查結(jié)果按性別整理如下:

女生閱讀時間人數(shù)統(tǒng)計表

閱讀時間(小時)

人數(shù)

占女生人數(shù)百分比

4

5

6

2

根據(jù)圖表解答下列問題:

1)在女生閱讀時間人數(shù)統(tǒng)計表中,    ;

2)此次抽樣調(diào)查中,共抽取了  名學(xué)生,學(xué)生閱讀時間的中位數(shù)在  時間段;

3)從閱讀時間在22.5小時的5名學(xué)生中隨機(jī)抽取2名學(xué)生參加市級閱讀活動,恰好抽到男女生各一名的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4,動點MN同時從A點出發(fā),點M沿AB以每秒1個單位長度的速度向中點B運動,點N沿折現(xiàn)ADC以每秒2個單位長度的速度向終點C運動,設(shè)運動時間為t秒,則CMN的面積為S關(guān)于t函數(shù)的圖象大致是( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】李白筆下孤帆一片日邊來描述了在噴薄而出的紅日映襯下,遠(yuǎn)遠(yuǎn)望見一葉帆船駛來的壯美河山之境.聰明的小芬同學(xué)利用幾何圖形,構(gòu)造出了此意境!如圖半徑為5的⊙0在線段AB上方,且圓心O在線段AB的中垂線上,到AB的距離為,已知AB20.線段PQAB(APAQ)PQ6,以PQ的中點C為頂點向上作RtCDE,其中∠D90°,CD3,sinDCEsinDCQ,設(shè)APm,當(dāng)邊DE與⊙O有交點時,則m的取值范圍是( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案