【題目】為了解某校九年級男生1000米跑的水平,從中隨機抽取部分男生進行測試,并把測試成績分為D、C、B、A四個等次繪制成如圖所示的不完整的統(tǒng)計圖,請你依圖解答下列問題:
(1)a= ,b= ,c= ;
(2)扇形統(tǒng)計圖中表示C等次的扇形所對的圓心角的度數(shù)為 度;
(3)學校決定從A等次的甲、乙、丙、丁四名男生中,隨機選取兩名男生參加全市中學生1000米跑比賽,請用列表法或畫樹狀圖法,求甲、乙兩名男生同時被選中的概率.
【答案】(1)2、45、20;(2)72;(3)
【解析】(1)根據(jù)A等次人數(shù)及其百分比求得總?cè)藬?shù),總?cè)藬?shù)乘以D等次百分比可得a的值,再用B、C等次人數(shù)除以總?cè)藬?shù)可得b、c的值;
(2)用360°乘以C等次百分比可得;
(3)畫出樹狀圖,由概率公式即可得出答案.
(1)本次調(diào)查的總?cè)藬?shù)為12÷30%=40人,
∴a=40×5%=2,b=×100=45,c=×100=20,
(2)扇形統(tǒng)計圖中表示C等次的扇形所對的圓心角的度數(shù)為360°×20%=72°,
(3)畫樹狀圖,如圖所示:
共有12個可能的結(jié)果,選中的兩名同學恰好是甲、乙的結(jié)果有2個,
故P(選中的兩名同學恰好是甲、乙)=.
科目:初中數(shù)學 來源: 題型:
【題目】為積極響應“弘揚傳統(tǒng)文化”的號召,某學校倡導全校1200名學生進行經(jīng)典詩詞誦背活動,并在活動之后舉辦經(jīng)典詩詞大賽,為了解本次系列活動的持續(xù)效果,學校團委在活動啟動之初,隨機抽取部分學生調(diào)查“一周詩詞誦背數(shù)量”,根調(diào)查結(jié)果繪制成的統(tǒng)計圖(部分)如圖所示.
大賽結(jié)束后一個月,再次抽查這部分學生“一周詩詞誦背數(shù)量”,繪制成統(tǒng)計表
一周詩詞誦背數(shù)量 | 3首 | 4首 | 5首 | 6首 | 7首 | 8首 |
人數(shù) | 10 | 10 | 15 | 40 | 25 | 20 |
請根據(jù)調(diào)查的信息
(1)活動啟動之初學生“一周詩詞誦背數(shù)量”的中位數(shù)為 ;
(2)估計大賽后一個月該校學生一周詩詞誦背6首(含6首)以上的人數(shù);
(3)選擇適當?shù)慕y(tǒng)計量,從兩個不同的角度分析兩次調(diào)查的相關數(shù)據(jù),評價該校經(jīng)典詩詞誦背系列活動的效果.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=x2+bx+c(bc≠0).
(1)若該拋物線的頂點坐標為(c,b),求其解析式;
(2)點A(m,n),B(m+1,n),C(m+6,n)在拋物線y=x2+bx+c上,求△ABC的面積;
(3)在(2)的條件下,拋物線y=x2+bx+c的圖象與x軸交于D(x1,0),E(x2,0)(x1<x2)兩點,且0<x1+x2<3,求b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC中,∠BAC=60°,AB=AC,點D為直線BC上一動點(點D不與B,C重合),以AD為邊在AD右側(cè)作菱形ADEF,使∠DAF=60°,連接CF.
(1)觀察猜想:如圖1,當點D在線段BC上時,①AB與CF的位置關系為: ;
②BC,CD,CF之間的數(shù)量關系為: .
(2)數(shù)學思考:如圖2,當點D在線段CB的延長線上時,結(jié)論①,②是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結(jié)論再給予證明.
(3)拓展延伸:如圖3,當點D在線段BC的延長線上時,設AD與CF相交于點G,若已知AB=4,CD=AB,求AG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在正方形ABCD中,G為CD邊中點,連接AG并延長交BC邊的延長線于E點,對角線BD交AG于F點.已知FG=2,則線段AE的長度為( 。
A. 6 B. 8 C. 10 D. 12
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,,AO是∠BAC的平分線,與AB的垂直平分線DO交于點O,∠ACB沿EF折疊后,點C 剛好與點O重合.下列結(jié)論錯誤的是( )
A.AO=COB.∠ECO=∠FCOC.EF⊥OCD.∠BFO=2∠FOC
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,在△ABC中,BD平分∠ABC,CD平分∠ACB,BD,CD交于點D,EF過點D交AB于點E,交AC于點F.
(1)如圖1,若EF∥BC,則∠BDE+∠CDF的度數(shù)為 (用含有∠A的代數(shù)式表示);
(2)當直線EF繞點D旋轉(zhuǎn)到如圖2所示的位置時,(1)中的結(jié)論是否成立?請說明理由;
(3)當直線EF繞點D旋轉(zhuǎn)到如圖3所示的位置時,(1)中的結(jié)論是否成立?若成立,請說明理由;若不成立,請求出∠BDE,∠CDF與∠A之間的關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A. 要了解某公司生產(chǎn)的100萬只燈泡的使用壽命,可以采用抽樣調(diào)查的方法
B. 4位同學的數(shù)學期末成績分別為100、95、105、110,則這四位同學數(shù)學期末成績的中位數(shù)為100
C. 甲乙兩人各自跳遠10次,若他們跳遠成績的平均數(shù)相同,甲乙跳遠成績的方差分別為0.51和0.62,則乙的表現(xiàn)較甲更穩(wěn)定
D. 某次抽獎活動中,中獎的概率為表示每抽獎50次就有一次中獎
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=4,BC=3.點E從點A出發(fā),以每秒4個單位長度的速度沿折線AC-CB運動,到點B停止.當點E不與△ABC的頂點重合時,過點E作其所在直角邊的垂線交AB于點F,將△AEF繞點F沿逆時針方向旋轉(zhuǎn)得到△NMF,使點A的對應點N落在射線FE上.設點E的運動時間為t(秒).
(1)用含t的代數(shù)式表示線段CE的長.
(2)求點M落到邊BC上時t的值.
(3)當點E在邊AC上運動時,設△NMF與△ABC重疊部分圖形為四邊形時,四邊形的面積為S(平方單位),求S與t之間的函數(shù)關系式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com