【題目】如圖,將一個(gè)等腰直角三角形按圖中方式依次翻折,若DE=a,DC=b,則下列說法:①DC′平分∠BDE;②BC的長為2a+b;③△BC′D是等腰三角形;④△CED的周長等于BC的長.其中正確的是()
A.①②③B.②④C.②③④D.③④
【答案】C
【解析】
根據(jù)折疊前后計(jì)算得到∠BDC′=22.5°,∠C′DE=45°,可判斷①;
根據(jù)折疊的性質(zhì)知,BE=AB=AC=a+b,EC=DE=b,由此可表示出BC的長,可判斷②;
分別表示出BC′和DC′的長,可判斷③;
表示出△CED的周長=CE+DE+CD= a+b+a=2a+b,可判斷④.
解:∵∠BDC′=22.5°,∠C′DE=45°,
∴①錯(cuò)誤;
根據(jù)折疊的性質(zhì)知,BE=AB=AC=a+b,EC=DE=b,
∴BC=BE+EC=a+b+a=2a+b,
∴②正確;
∵△C′ED≌△CED,且都是等腰直角三角形,
∴C′D=CD=b,C′E=CE=a,
∴BC′=BE- C′E=a+b-a=b,
∴BC′=DC′,
∴△BC′D是等腰三角形;
故③正確;
∵△CED的周長=CE+DE+CD= a+b+a=2a+b =BC,
故④正確.
故選:C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在 Rt△ABC 中,∠C=90°,AC=8cm,BC=6cm,M 在 AC上,且AM=6cm,過點(diǎn) A(與 BC 在 AC 同側(cè))作射線 AN⊥AC,若動(dòng)點(diǎn) P 從點(diǎn) A 出發(fā),沿射線 AN 勻速運(yùn)動(dòng),運(yùn)動(dòng)速度為 1cm/s,設(shè)點(diǎn) P 運(yùn)動(dòng)時(shí)間為 t 秒.
(1)經(jīng)過 秒時(shí),Rt△AMP 是等腰直角三角形?
(2)經(jīng)過幾秒時(shí),PM⊥MB?
(3)經(jīng)過幾秒時(shí),PM⊥AB?
(4)當(dāng)△BMP 是等腰三角形時(shí),直接寫出 t 的所有值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為的等邊三角形的頂點(diǎn)分別在邊,上當(dāng)在邊上運(yùn)動(dòng)時(shí),隨之在邊上運(yùn)動(dòng),等邊三角形的形狀保持不變,運(yùn)動(dòng)過程中,點(diǎn)到點(diǎn)的最大距離為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖 1,在矩形 ABCD 中,動(dòng)點(diǎn) E 從點(diǎn) B 出發(fā),沿 B→C→D→A 方向運(yùn)動(dòng)至點(diǎn) A 處停止,設(shè)點(diǎn) E 運(yùn)動(dòng)的路程為 x,△ABE 的面積為 y,如果 y 關(guān)于 x 的函數(shù)圖象如圖 2 所示,則當(dāng) x=10 時(shí),點(diǎn) E應(yīng)運(yùn)動(dòng)到( )
A.A 處B.B 處C.C 處D.D 處
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線 y=2x+4 與 x 軸相交于點(diǎn) A,與 y 軸相交于點(diǎn) B.
(1)求 A,B 兩點(diǎn)的坐標(biāo);
(2)過 B 點(diǎn)作直線 BP 與 x 軸相交于 P,且使 OP=2OA,求直線 BP 的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解市民“獲取新聞的最主要途徑”,某市記者開展了一次抽樣調(diào)查,根據(jù)調(diào)查結(jié)果繪制了如圖所示尚不完整的統(tǒng)計(jì)圖.
根據(jù)圖中信息解答下列問題:
(1)這次接受調(diào)查的市民總?cè)藬?shù)是________;
(2)扇形統(tǒng)計(jì)圖中,“電視”所在扇形的圓心角的度數(shù)是________;
(3)請補(bǔ)全條形統(tǒng)計(jì)圖;
(4)若該市約有80萬人,請你估計(jì)其中將“電腦上網(wǎng)和手機(jī)上網(wǎng)”作為“獲取新聞的最主要途徑”的總?cè)藬?shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形ABCD中,AB=3,BC=4.點(diǎn)P在線段AB或線段AD上,點(diǎn)Q中線段BC上,沿直線PQ將矩形折疊,點(diǎn)B的對應(yīng)點(diǎn)是點(diǎn)E.
(1)如圖1,點(diǎn)P、點(diǎn)E在線段AD上,點(diǎn)Q在線段BC上,連接BP、EQ.
①求證:四邊形PBQE是菱形.
②四邊形PBQE是菱形時(shí),AP的取值范圍是 .
(2)如圖2,點(diǎn)P在線段AB上,點(diǎn)Q在線段AD上,點(diǎn)E在線段AD上,若AE=,求折痕PQ的長.
(3)點(diǎn)P在線段AB,AP=2,點(diǎn)Q在線段BC上,連AE、CE.請直接寫出四邊形AECD的面積的最小值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)y=mx+3的圖象經(jīng)過點(diǎn)A(2,6),B(n,-3).求:
(1)m,n的值;
(2)△OAB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A(0,3),B(,0),AB =6,作∠DBO=∠ABO,點(diǎn)H為y軸上的點(diǎn),∠CAH=∠BAO,BD交y軸于點(diǎn)E,直線DO交AC于點(diǎn)C.
(1)證明:△ABE為等邊三角形;
(2)若CD⊥AB于點(diǎn)F,求線段CD的長;
(3)動(dòng)點(diǎn)P從A出發(fā),沿A﹣O﹣B路線運(yùn)動(dòng),速度為1個(gè)單位長度每秒,到B點(diǎn)處停止運(yùn)動(dòng);動(dòng)點(diǎn)Q從B出發(fā),沿B﹣O﹣A路線運(yùn)動(dòng),速度為2個(gè)單位長度每秒,到A點(diǎn)處停止運(yùn)動(dòng).兩點(diǎn)同時(shí)開始運(yùn)動(dòng),都要到達(dá)相應(yīng)的終點(diǎn)才能停止.在某時(shí)刻,作PM⊥CD于點(diǎn)M,QN⊥CD于點(diǎn)N.問兩動(dòng)點(diǎn)運(yùn)動(dòng)多長時(shí)間時(shí)△OPM與△OQN全等?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com