【題目】為了方便居民低碳出行,聊城市公共自行車租賃系統(tǒng)(一期)試運(yùn)行.圖①是公共自行車的實(shí)物圖,圖②是公共自行車的車架示意圖,點(diǎn)A、D、C、E在同一條直線上,CD=30cm,DF=20cm,AF=25cm,F(xiàn)D⊥AE于點(diǎn)D,座桿CE=15cm,且∠EAB=75°.
(1)求AD的長;
(2)求點(diǎn)E到AB的距離.(精確到0.1cm,參考數(shù)據(jù):sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)

【答案】
(1)解:在Rt△ADF中,由勾股定理得,

AD= = =15(cm)


(2)解:AE=AD+CD+EC=15+30+15=60(cm),

如圖②,過點(diǎn)E作EH⊥AB于H,

在Rt△AEH中,sin∠EAH= ,

則EH=AEsin∠EAH=ABsin75°≈60×0.97=58.2(cm).

答:點(diǎn)E到AB的距離為58.2 cm.


【解析】(1)根據(jù)勾股定理求出AD的長;(2)作EH⊥AB于H,求出AE的長,根據(jù)正弦的概念求出點(diǎn)E到車架AB的距離.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成推理過程

如圖,AB∥DC,AE⊥BD,CF⊥BD,BF=DE.求證:AE=CF.

證明∵AB∥DC,

∴∠1=

∵AE⊥BD,CF⊥BD,

∴∠AEB=

∵BF=DE,

∴BF﹣EF=DE﹣EF

=

∴△ABE≌△CDF

∴AE=CF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,AB是⊙O的直徑,F(xiàn)O⊥AB,垂足為點(diǎn)O,連接AF并延長交⊙O于點(diǎn)D,連接OD交BC于點(diǎn)E,∠B=30°,F(xiàn)O=2
(1)求AC的長度;
(2)求圖中陰影部分的面積.(計(jì)算結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用計(jì)算器計(jì)算:

(1)π-(精確到0.01);

(2) (精確到0.001);

(3)4(精確到0.1);

(4)+()(精確到0.01).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小張騎自行車勻速從甲地到乙地,在途中因故停留了一段時(shí)間后,仍按原速騎行,小李騎摩托車比小張晚出發(fā)一段時(shí)間,以800/分的速度勻速從乙地到甲地,兩人距離乙地的路程y()與小張出發(fā)后的時(shí)間x()之間的函數(shù)圖象如圖所示.

(1)求小張騎自行車的速度;

(2)求小張停留后再出發(fā)時(shí)yx之間的函數(shù)表達(dá)式;

(3)求小張與小李相遇時(shí)x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=﹣ +bx+c圖象經(jīng)過A(﹣1,0),B(4,0)兩點(diǎn).

(1)求拋物線的解析式;
(2)若C(m,m﹣1)是拋物線上位于第一象限內(nèi)的點(diǎn),D是線段AB上的一個(gè)動(dòng)點(diǎn)(不與A、B重合),過點(diǎn)D分別作DE∥BC交AC于E,DF∥AC交BC于F.
①求證:四邊形DECF是矩形;
②試探究:在點(diǎn)D運(yùn)動(dòng)過程中,DE、DF、CF的長度之和是否發(fā)生變化?若不變,求出它的值,若變化,試說明變化情況.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知某船于上午8時(shí)在A處觀測(cè)小島C在北偏東60°方向上,該船以每小時(shí)20海里的速度向東航行到B處,測(cè)得小島C在北偏東30°方向上,船以原來的速度繼續(xù)向東航行2小時(shí),到達(dá)島C正南方點(diǎn)D處,船從AD一共航行了多少海里?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)O為Rt△ABC斜邊AB上一點(diǎn),以O(shè)A為半徑的⊙O與BC切于點(diǎn)D,與AC交于點(diǎn)E,連接AD.
(1)求證:AD平分∠BAC;
(2)若∠BAC=60°,OA=2,求陰影部分的面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,AABC的三個(gè)頂點(diǎn)坐標(biāo)為A(一3,4),B(一4,2),C(一2,1),ΔABC繞原點(diǎn)順時(shí)針旋轉(zhuǎn)90°,得到△A1B1C1,ΔA1B1C1向左平移2個(gè)單位,再向下平移5個(gè)單位得到△A2B2C2

(1)畫出ΔA1B1Cl和△A2B2C2

(2)P(ab)是AABCAC邊上一點(diǎn),ΔABC經(jīng)旋轉(zhuǎn)、平移后點(diǎn)P的對(duì)應(yīng)點(diǎn)分別為P1P2,請(qǐng)寫出點(diǎn)P1、P2的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案