圓的半徑為13cm,兩弦AB∥CD,AB=24cm,CD=10cm,則兩弦AB,CD的距離是( )
A.7cm B.17cm C.12cm D.7cm或17cm
科目:初中數學 來源: 題型:
如圖,小明想測量一棵樹的高度,他發(fā)現樹的影子落在了地上和墻上,此時測得地面上的影長BD為4m,墻上的影子CD長為1m,同一時刻一根長為1m的垂直于地面上的標桿的影長為0.5m,則樹的高度為 m。
查看答案和解析>>
科目:初中數學 來源: 題型:
將拋物線y=3x2的圖象先向上平移3個單位,再向右平移4個單位所得的解析式為( )
A.y=3(x-3)2+4 B. y=3(x+4)2-3 C. y=3(x-4)2+3 D. y=3(x-4)2-3
查看答案和解析>>
科目:初中數學 來源: 題型:
如圖,△ABC是一塊銳角三角形余料,邊BC=120mm,高AD=80mm,要把它加工成正方形零件,使正方形的一邊在BC上,其余兩個頂點分別在AB、AC上,這個正方形零件的邊長是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
如圖,在等邊△ABC中,D為BC邊上一點,E為AC邊上一點,且∠ADE=60°.
(1)求證:△ABD∽△DCE;
(2)若BD=3,CE=2,求△ABC的邊長.
查看答案和解析>>
科目:初中數學 來源: 題型:
如圖1,拋物線y=nx2-11nx+24n (n<0) 與x軸交于B、C兩點(點B在點C的左側),拋物線上另有一點A在第一象限內,且∠BAC=90°.
(1)填空:點B的坐標為(_ ),點C的坐標為(_ );
(2)連接OA,若△OAC為等腰三角形.
①求此時拋物線的解析式;
②如圖2,將△OAC沿x軸翻折后得△ODC,點M為①中所求的拋物線上點A與點C兩點之間一動點,且點M的橫坐標為m,過動點M作垂直于x軸的直線l與CD交于點N,試探究:當m為何值時,四邊形AMCN的面積取得最大值,并求出這個最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com