【題目】如圖,是由若干個完全相同的小正方體組成的一個幾何體。
(1)圖中有 塊小正方體;
(2)請畫出這個幾何體的左視圖和俯視圖;(用陰影表示)
(3)如果在這個幾何體上再添加一些相同的小正方體,并保持這個幾何體的俯視圖和左視圖不變,那么最多可以再添加幾個小正方體?
科目:初中數(shù)學 來源: 題型:
【題目】方法感悟:
(1)如圖①,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在邊BC、CD上分別存在點G、H,使得四邊形EFGH的周長最。咳舸嬖,求出它周長的最小值;若不存在,請說明理由.
問題解決:
(2)如圖②,有一矩形板材ABCD,AB=3米,AD=6米,現(xiàn)想從此板材中裁出一個面積盡可能大的四邊形EFGH部件,使∠EFG=90°,EF=FG=米,∠EHG=45°,經(jīng)研究,只有當點E、F、G分別在邊AD、AB、BC上,且AF<BF,并滿足點H在矩形ABCD內部或邊上時,才有可能裁出符合要求的部件,試問能否裁得符合要求的面積盡可能大的四邊形EFGH部件?若能,求出裁得的四邊形EFGH部件的面積,并寫出在以B為坐標原點,直線BC為x軸,直線BA為y軸的坐標系中,點H的坐標;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,數(shù)軸上A,B兩點對應的數(shù)分別-4,8.有一動點P從點A出發(fā)第一次向左運動1個單位長度;然后在新的位置第二次運動,向右運動2個單位長度;在此位置第三次運動,向左運動3個單位長度,…按照如此規(guī)律不斷地左右運動
(1)當運動到第2018次時,求點P所對應的有理數(shù).
(2)點P會不會在某次運動時恰好到達某一個位置,使點P到點B的距離是點P到點A的距離的3倍?若可能請求出此時點P的位置,若不可能請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,AE⊥BC,垂足為點E,CE=CD,點F為CE的中點,點G為CD上的一點,連接DF,EG,AG,∠1=∠2.
(1)若CF=2,AE=3,求BE的長;
(2)求證:∠CEG=∠AGE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如下表,從左到右在每個小格中都填入一個整數(shù),使得任意三個相鄰格子所填整數(shù)之和都相等,則第2018個格子中的整數(shù)是_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形中,,,,,連接,點是在四邊形邊上的一點;若點到的距離為 ,這樣的點有 ( )
A. 0個B. 1個C. 2個D. 3個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市綠化部門決定利用現(xiàn)有的不同種類花卉搭配園藝造型,擺放于城區(qū)主要大道的兩側.A、B兩種園藝造型均需用到杜鵑花,A種造型每個需用杜鵑花25盆,B種造型每個需用杜鵑花35盆,解答下列問題:
(1)已知人民大道兩側搭配的A、B兩種園藝造型共60個,恰好用了1700盆杜鵑花,A、B兩種園藝造型各搭配了多少個?
(2)如果搭配一個A種造型的成本W與造型個數(shù)的關系式為:W=100―x (0<x<50),搭配一個B種造型的成本為80元.現(xiàn)在觀海大道兩側也需搭配A、B兩種園藝造型共50個,要求每種園藝造型不得少于20個,并且成本總額y(元)控制在4500元以內. 以上要求能否同時滿足?請你通過計算說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】完成下面的推理過程.
如圖,AB∥CD,BE、CF分別是∠ABC和∠BCD的平分線.求證:∠E=∠F
證明:∵AB∥CD(已知)
∴∠ABC=∠BCD( )
∵BE、CF分別是∠ABC和∠BCD的平分線(已知)
∴∠CBE=∠ABC,∠BCF=∠BCD( )
∴∠CBE=∠BCF( )
∴BE∥CF( )
∴∠E=∠F( )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com