【題目】如圖,小明作出了邊長為2的第1個正A1B1C1 , 算出了正A1B1C1的面積. 然后分別取A1B1C1的三邊中點A2、B2C2 , 作出了第2個正A2B2C2 , 算出了正A2B2C2的面積. 用同樣的方法,作出了第3個正A3B3C3 , 算出了正A3B3C3的面積……,由此可得,第2個正A2B2C2的面積是_______,n個正AnBnCn的面積是______

【答案】

【解析】

根據(jù)相似三角形的性質(zhì),先求出正A2B2C2,正A3B3C3的面積,依此類推AnBnCn的面積是.

A1B1C1的面積是×22==,

∵△A2B2C2A1B1C1相似,并且相似比是1:2,

∴面積的比是1:4,

則正A2B2C2的面積是× ==;

∵正A3B3C3與正A2B2C2的面積的比也是1:4,

∴面積是×==;

依此類推AnBnCnAn1Bn1Cn1的面積的比是1:4,

n個三角形的面積是.

故答案是: , .

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某商場欲購進果汁飲料和碳酸飲料共50箱,兩種飲料每箱進價和售價如下表所示:

飲料

果汁飲料

碳酸飲料

進價(元/箱)

55

36

售價(元/箱)

63

42

設購進果汁飲料x箱(x為正整數(shù)),且所購進的兩種飲料能全部賣出,獲得的總利潤為w元(注:總利潤=總售價﹣總進價).
(1)求總利潤w關于x的函數(shù)關系式;
(2)如果購進兩種飲料的總費用不超過2000元,那么該商場如何進貨才能獲利最多?并求出最大利潤.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】國家環(huán)保局統(tǒng)一規(guī)定,空氣質(zhì)量分為5級.當空氣污染指數(shù)達0﹣50時為1級,質(zhì)量為優(yōu);51﹣100時為2級,質(zhì)量為良;101﹣200時為3級,輕度污染;201﹣300時為4級,中度污染;300以上時為5級,重度污染.某城市隨機抽取了2015年某些天的空氣質(zhì)量檢測結果,并整理繪制成如圖兩幅不完整的統(tǒng)計圖.請根據(jù)圖中信息,解答下列各題:
(1)本次調(diào)查共抽取了天的空氣質(zhì)量檢測結果進行統(tǒng)計;
(2)補全條形統(tǒng)計圖;
(3)扇形統(tǒng)計圖中3級空氣質(zhì)量所對應的圓心角為°;
(4)如果空氣污染達到中度污染或者以上,將不適宜進行戶外活動,根據(jù)目前的統(tǒng)計,請你估計2015年該城市有多少天不適宜開展戶外活動.(2015年共365天)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,用直尺和圓規(guī)作BAD的平分線AG交BC于點E,若BF=12,AB=10,則AE的長為( )

A.16 B.15 C.14 D.13

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖ABC為等邊三角形,AECDAD,BE相交于點PBQADQ,PQ3,PE1

1求證BEAD;

2AD的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在數(shù)軸上點A、B、C表示的數(shù)分別為﹣2、1、6,點A與點B之間的距離表示為AB,點B與點C之間的距離表示為BC,點A與點C之間的距離表示為AC

(1)請直接寫出AB、BC、AC的長度;

(2)若點DA點出發(fā),以每秒1個單位長度的速度向左運動,點EB點出發(fā)以每秒2個單位長度的速度向右運動,點FC點出發(fā)以每秒5個單位長度的速度向右運動.設點D、E、F同時出發(fā),運動時間為t秒,試探索:EF﹣DE的值是否隨著時間t的變化而變化?請說明理由.

(3)若點M以每秒4個單位的速度從A點出發(fā),點N以每秒3個單位的速度運動從C點出發(fā),設點M、N同時出發(fā),運動時間為t秒,試探究:經(jīng)過多少秒后,點M、N兩點間的距離為14個單位.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一組數(shù)據(jù)x1,x2,…,xn的平均數(shù)為5,方差為16,其中n是正整數(shù),則另一組數(shù)據(jù)3x1+2,3x2+2,…,3xn+2的平均數(shù)和標準差分別是(  )

A. 15,144 B. 17,144 C. 17,12 D. 7,16

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先閱讀下列解題過程,然后回答問題:

解方程:

解:①當≥0時,原方程可化為: ,解得

②當<0時,原方程可化為: ,解得;

所以原方程的解是

(1)解方程:

(2)探究:當為何值時,方程 ①無解;②只有一個解;③有兩個解。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,射線OA的方向是北偏東20°,射線OB的方向是北偏西40°,ODOB的反向延長線.若OC是∠AOD的平分線,則∠BOC=_____°,射線OC的方向是_____

查看答案和解析>>

同步練習冊答案