【題目】如圖,平面內(nèi)的兩條直線l1、l2,點(diǎn)A、B在直線l2上,過點(diǎn)A、B兩點(diǎn)分別作直線l1的垂線,垂足分別為A1、B1,我們把線段A1B1叫做線段AB在直線l2上的正投影,其長度可記作T(AB,CD)或T(AB,l2),特別地,線段AC在直線l2上的正投影就是線段A1C,請依據(jù)上述定義解決如下問題.
(1)如圖1,在銳角△ABC中,AB=5,T(AC,AB)=3,則T(BC,AB)= ;
(2)如圖2,在Rt△ABC中,∠ACB=90°,T(AC,AB)=4,T(BC,AB)=9,求△ABC的面積;
(3)如圖3,在鈍角△ABC中,∠A=60°,點(diǎn)D在AB邊上,∠ACD=90°,T(AD,AC)=2,T(BC,AB)=6,求T(BC,CD).
【答案】(1)2 ;(2)△ABC的面積=39;(3)T(BC,CD)=
【解析】
(1)如圖1,過C作CH⊥AB,根據(jù)正投影的定義求出BH的長即可;
(2)如圖2,過點(diǎn)C作CH⊥AB于H,由正投影的定義可知AH=4,BH=9,再根據(jù)相似三角形的性質(zhì)求出CH的長即可解決問題;
(3)如圖3,過C作CH⊥AB于H,過B作BK⊥CD于K,求出CD、DK即可得答案.
(1)如圖1,過C作CH⊥AB,垂足為H,
∵T(AC,AB)=3,
∴AH=3,
∵AB=5,
∴BH=AB-AH=2,
∴T(BC,AB)=BH=2,
故答案為:2;
(2)如圖2,過點(diǎn)C作CH⊥AB于H,
則∠AHC=∠CHB=90°,
∴∠B+∠HCB=90°,
∵∠ACB=90°,
∴∠B+∠A=90°
∴∠A=∠HCB,
∴△ACH∽△CBH,
∴CH:BH=AH:CH,
∴CH2=AH·BH,
∵T(AC,AB)=4,T(BC,AB)=9,
∴AH=4,BH=9,
∴AB=AH+BH=13,CH=6,
∴S△ABC=(AB·CH)÷2=13×6÷2=39;
(3)如圖3,過C作CH⊥AB于H,過B作BK⊥CD于K,
∵∠ACD=90°,T(AD,AC)=2,
∴AC=2,
∵∠A=60°,
∴∠ADC=∠BDK=30°,
∴CD=AC·tan60°=2,AD=2AC=4,AH=AC=1,
∴DH=4-1=3,
∵T(BC,AB)=6,CH⊥AB,
∴BH=6,
∴DB=BH-DH=3,
在Rt△BDK中,∠K=90°,BD=3,∠BDK=30°,
∴DK=BD·cos30°=,
∴T(BC,CD)=CK=CD+DK=+=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為滿足市場需求,某超市在五月初五“端午節(jié)”來臨前夕,購進(jìn)一種品牌
粽子,每盒進(jìn)價是40元,超市規(guī)定每盒售價不得少于45元.根據(jù)以往銷售經(jīng)驗(yàn)發(fā)現(xiàn):當(dāng)售價定為每盒45元時,每天可賣出700盒,每盒售價每提高1元,每天要少賣出20盒.
(1)試求出每天的銷售量y(盒)與每盒售價 (元)之間的函數(shù)關(guān)系式;(4分)
(2)當(dāng)每盒售價定為多少元時,每天銷售的利潤 (元)最大?最大利潤是多少?(6分)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一副含和角的三角板和拼合在一個平面上,邊與重合,.當(dāng)點(diǎn)從點(diǎn)出發(fā)沿方向滑動時,點(diǎn)同時從點(diǎn)出發(fā)沿射線方向滑動.當(dāng)點(diǎn)從點(diǎn)滑動到點(diǎn)時,點(diǎn)運(yùn)動的路徑長為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=﹣2x2﹣4x+6.
(1)用配方法求出函數(shù)的頂點(diǎn)坐標(biāo);
(2)將該二次函數(shù)圖象向右平移幾個單位,可使平移后所得圖象經(jīng)過坐標(biāo)原點(diǎn)?并直接寫出平移后所得圖象與x軸的另一個交點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=﹣x2+2x+m的圖象過點(diǎn)A(3,0),與y軸交于點(diǎn)B,直線AB與這個二次函數(shù)圖象的對稱軸交于點(diǎn)P.
(1)求點(diǎn)B的坐標(biāo);
(2)求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,對于點(diǎn)P(x,y)和Q(x,y′),給出如下定義:若y′=,則稱點(diǎn)Q為點(diǎn)P的“親密點(diǎn)”.例如:點(diǎn)(1,2)的“親密點(diǎn)”為點(diǎn)(1,3),點(diǎn)(﹣1,3)的“親密點(diǎn)”為點(diǎn)(﹣1,﹣3).若點(diǎn)P在函數(shù)y=x2﹣2x﹣3的圖象上,則其“親密點(diǎn)”Q的縱坐標(biāo)y′關(guān)于x的函數(shù)圖象大致正確的是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O.
(1)連接AC、BD,若∠BAC=∠CAD=60°,則△DBC的形狀為 .
(2)在(1)的條件下,試探究線段AD,AB,AC之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)若,∠DAB=∠ABC=90°,點(diǎn)P為上的一動點(diǎn),連接PA,PB,PD,求證:PD=PB+PA.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD⊥BC于點(diǎn)D,點(diǎn)F為AB上一點(diǎn),連接CF,過點(diǎn)B作BE⊥BC交CF的延長線于點(diǎn)E,交AD于點(diǎn)H,且∠1=∠2
(1)求證:AB=AC;
(2)若∠1=22°,∠AFC=110°,求∠BCE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】淇淇和嘉嘉在學(xué)習(xí)了利用相似三角形測高之后分別測量兩個旗桿高度.
(1)如圖1所示,淇淇將鏡子放在地面上,然后后退直到她站直身子剛好能從鏡子里看到旗桿的頂端E,測得腳掌中心位置B到鏡面中心C的距離是50cm,鏡面中心C距離旗桿底部D的距離為4m,已知淇淇同學(xué)的身高是1.54m,眼睛位置A距離淇淇頭頂?shù)木嚯x是4cm,求旗桿DE 的高度.
如圖2所示,嘉嘉在某一時刻測得 1 米長的竹竿豎直放置時影長2米,在同時刻測量旗桿的影長時,旗桿的影子一部分落在地面上(BC),另一部分落在斜坡上(CD),他測得落在地面上的影長為10米,落在斜坡上的影長為米,∠DCE=45°,求旗桿AB的高度?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com