【題目】如圖1,某人用一張面積為S的三角形紙片ABC剪出一個(gè)△EFP,記△EFP的面積為T,已知E、F、P分別是△ABC三邊上的三點(diǎn),且EF∥BC.
(1)如圖2,當(dāng)P與B重合,設(shè)分別等于、、時(shí),△PEF的面積分別為、、.
① = ,= ,= ;
② 寫(xiě)出的求解過(guò)程;
(2)如圖3,當(dāng)點(diǎn)P是△ABC邊BC上的任意一點(diǎn)時(shí)(點(diǎn)P可與B或C重合),設(shè), 試求出與、S的函數(shù)關(guān)系式;
(3)請(qǐng)?zhí)骄?/span>T是否存在最大值,若存在,請(qǐng)求出這個(gè)最大值;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)①S,,;②見(jiàn)解析;(2),理由見(jiàn)解析;(3)T存在最大值,當(dāng)k=時(shí),.
【解析】(1)由等高可推出面積比等于底邊之比,進(jìn)而推出三角形面積;
(2)點(diǎn)P在BC上的任意一處,連BF,由EF∥BC,得△BEF與同高等底,因此,由(1)可知:△AEF∽△ABC,可得︰S=︰1,即=S·,
由AE︰AB=k︰1,得AE︰BE=k︰(1-k),故︰=k︰(1-k),即k·=(1-k)·,所以k︰T=((1-k)S,化簡(jiǎn)可得.
(3) 由(2)可知T=-(-k)S,求拋物線(xiàn)的頂點(diǎn)坐標(biāo)可得.
解:(1)①=S,=,=S;
②如圖∵EF∥BC,
∴∠AEF=∠ABC,∠A=∠A,
∴△AEF∽△ABC,
又∵,
∴,
∴=S.過(guò)F作FD⊥AB于D,
∵FD·BE,,
由于AE︰AB=3︰4,
∴AE︰BE=3︰1,
∴,
∴=,=S.
(2)當(dāng)時(shí),,理由如下:
如圖,點(diǎn)P在BC上的任意一處,連BF,
∴EF∥BC,△BEF與同高等底,
∴,
由(1)可知:△AEF∽△ABC,
設(shè)AE︰AB=k︰1,
︰S=︰1,
∴=S·.
又∵AE︰AB=k︰1,則AE︰BE=k︰(1-k),
︰=k︰(1-k),k·=(1-k)·,k︰T=((1-k)S
T=(1-k)kS即T=-(-k)S;
(3)由(2)可知T=-(-k)S=-(-k+-)S=-S(k-)+,
∴T存在最大值,當(dāng)k=時(shí),.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)(發(fā)現(xiàn))如圖①,已知等邊△ABC,將直角三角板的60°角頂點(diǎn)D任意放在BC邊上(點(diǎn)D不與點(diǎn)B、C重合),使兩邊分別交線(xiàn)段AB、AC于點(diǎn)E、F.
①若AB=6,AE=4,BD=2,則CF =________;
②求證:△EBD∽△DCF.
(2)(思考)若將圖①中的三角板的頂點(diǎn)D在BC邊上移動(dòng),保持三角板與邊AB、AC的兩個(gè)交點(diǎn)E、F都存在,連接EF,如圖②所示.問(wèn)點(diǎn)D是否存在某一位置,使ED平分∠BEF且FD平分∠CFE?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
(3)(探索)如圖③,在等腰△ABC中,AB=AC,點(diǎn)O為BC邊的中點(diǎn),將三角形透明紙板的一個(gè)頂點(diǎn)放在點(diǎn)O處(其中∠MON=∠B),使兩條邊分別交邊AB、AC于點(diǎn)E、F(點(diǎn)E、F均不與△ABC的頂點(diǎn)重合),連接EF.設(shè)∠B=α,則△AEF與△ABC的周長(zhǎng)之比為________(用含α的表達(dá)式表示)
.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】不透明的口袋里裝有紅、黃、藍(lán)三種顏色的小球(除顏色不同外,其它都一樣),其中紅球2個(gè),藍(lán)球1個(gè),現(xiàn)在從中任意摸出一個(gè)紅球的概率為.
(1)求袋中黃球的個(gè)數(shù);
(2)第一次摸出一個(gè)球(不放回),第二次再摸出一個(gè)球,請(qǐng)用樹(shù)狀圖或列表法求兩次摸出的都是紅球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)y=﹣x+4與x軸、y軸分別交于點(diǎn)A、B、C是線(xiàn)段AB上一點(diǎn),四邊形OADC是菱形,則OD的長(zhǎng)為( )
A. 4.2B. 4.8C. 5.4D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某學(xué)校的教室多媒體投影儀E正對(duì)投影幕布AB的中央,其距離EG = 3.60米.為了方便課堂教學(xué)與使用,現(xiàn)將投影幕布由黑板正中AB的位置調(diào)整到左面BC的位置處,測(cè)得米,,此時(shí)投影儀E調(diào)整到線(xiàn)段EB上的點(diǎn)F處且恰好正對(duì)投影幕布BC的中央.若投影儀與投影幕布的安裝距離控制在3.45米到3.65米之間效果最好,則調(diào)整后的投影儀F與投影幕布BC之間的距離是否符合要求?請(qǐng)通過(guò)計(jì)算加以說(shuō)明.
(參考數(shù)據(jù): ,結(jié)果精確到0.01)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)其中滿(mǎn)足:.
(1)
(2)在坐標(biāo)平面內(nèi),將△ABC平移,點(diǎn)A的對(duì)應(yīng)點(diǎn)為點(diǎn)D,點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)E,點(diǎn)C的對(duì)應(yīng)點(diǎn)為點(diǎn)F,若平移后E、F兩點(diǎn)都在坐標(biāo)軸上,請(qǐng)直接寫(xiě)出點(diǎn)E的坐標(biāo);
(3)若在△ABC內(nèi)部的軸上存在一點(diǎn)P,在(2)的平移下,點(diǎn)P的對(duì)應(yīng)點(diǎn)為點(diǎn)Q,使得△APQ的面積為10,則點(diǎn)P的坐標(biāo)為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某年級(jí)共有300名學(xué)生.為了解該年級(jí)學(xué)生A,B兩門(mén)課程的學(xué)習(xí)情況,從中隨機(jī)抽取60名學(xué)生進(jìn)行測(cè)試,獲得了他們的成績(jī)(百分制),并對(duì)數(shù)據(jù)(成績(jī))進(jìn)行整理、描述和分析.下面給出了部分信息.
.A課程成績(jī)的頻數(shù)分布直方圖如下(數(shù)據(jù)分成6組:,,,,,);
.A課程成績(jī)?cè)?/span>這一組是:
70 71 71 71 76 76 77 78 79 79 79
.A,B兩門(mén)課程成績(jī)的平均數(shù)、中位數(shù)、眾數(shù)如下:
課程 | 平均數(shù) | 中位數(shù) | 眾數(shù) |
A | |||
B | 70 | 83 |
根據(jù)以上信息,回答下列問(wèn)題:
(1)寫(xiě)出表中的值;
(2)在此次測(cè)試中,某學(xué)生的A課程成績(jī)?yōu)?/span>76分,B課程成績(jī)?yōu)?/span>71分,這名學(xué)生成績(jī)排名更靠前的課程是________(填“A”或“B”),理由是_______;
(3)假設(shè)該年級(jí)學(xué)生都參加此次測(cè)試,估計(jì)A課程成績(jī)超過(guò)分的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種蔬菜的銷(xiāo)售單價(jià)y1與銷(xiāo)售月份x之間的關(guān)系如圖1所示,成本y2與銷(xiāo)售月份x之間的關(guān)系如圖2所示(圖1的圖象是線(xiàn)段,圖2的圖象是拋物線(xiàn))
(1)已知6月份這種蔬菜的成本最低,此時(shí)出售每千克的收益是多少元?(收益=售價(jià)﹣成本)
(2)哪個(gè)月出售這種蔬菜,每千克的收益最大?簡(jiǎn)單說(shuō)明理由.
(3)已知市場(chǎng)部銷(xiāo)售該種蔬菜4、5兩個(gè)月的總收益為22萬(wàn)元,且5月份的銷(xiāo)售量比4月份的銷(xiāo)售量多2萬(wàn)千克,求4、5兩個(gè)月的銷(xiāo)售量分別是多少萬(wàn)千克?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解下列方程:(1)3x2-5x+2=0;(2)(7x+3)2=2(7x+3);
(3)t2-t-=0;(4)(y+1)(y-1)=2y-1.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com