【題目】如圖,在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),四邊形是長(zhǎng)方形,∥,點(diǎn)、的坐標(biāo)分別為,,是的中點(diǎn),點(diǎn)在邊上運(yùn)動(dòng).當(dāng)是腰長(zhǎng)為5的等腰三角形時(shí),則點(diǎn)的坐標(biāo)為________________.
【答案】(3,4)或(2,4)或(8,4)
【解析】
根據(jù)題意可知題中沒(méi)有指明△OPM的腰長(zhǎng)與底分別是哪個(gè)邊,故應(yīng)該分情況進(jìn)行分析,從而求得點(diǎn)P的坐標(biāo).
解:OM是等腰三角形的一條腰時(shí):
若點(diǎn)O是頂角頂點(diǎn)時(shí),P點(diǎn)就是以點(diǎn)O為圓心,以5為半徑的弧與CB的交點(diǎn),
在直角△OPC中,,則P的坐標(biāo)是(3,4).
若M是頂角頂點(diǎn)時(shí),P點(diǎn)就是以點(diǎn)M為圓心,以5為半徑的弧與CB的交點(diǎn),
過(guò)M作MD⊥BC于點(diǎn)D,
在直角△PDM中,,
當(dāng)P在D的左邊時(shí),CP=5-3=2,則P的坐標(biāo)是(2,4);
當(dāng)P在D的右側(cè)時(shí),CP=5+3=8,則P的坐標(biāo)是(8,4).
故P的坐標(biāo)為:(3,4)或(2,4)或(8,4).
故答案為:(3,4)或(2,4)或(8,4).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一艘輪船位于燈塔P的北偏東60°方向,與燈塔P的距離為80海里的A處,它沿正南方向航行一段時(shí)間后,到達(dá)位于燈塔P的南偏東45°方向的B處,求此時(shí)輪船所在的B處與燈塔P的距離.(參考數(shù)據(jù):≈2.449,結(jié)果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=﹣x2+mx+n與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,拋物線的對(duì)稱軸交x軸于點(diǎn)D,已知A(﹣1,0),C(0,2).
(1)求拋物線的表達(dá)式;
(2)在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由;
(3)點(diǎn)E時(shí)線段BC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)E作x軸的垂線與拋物線相交于點(diǎn)F,當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí),四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時(shí)E點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校的一個(gè)數(shù)學(xué)興趣小組在本校學(xué)生中開(kāi)展主題為“環(huán)廣西公路自行車世界巡回賽”的專題調(diào)查活動(dòng),取隨機(jī)抽樣的方式進(jìn)行問(wèn)卷調(diào)查,問(wèn)卷調(diào)查的結(jié)果分為“非常了解”、“比較了解”、“基本了解”、“不太了解”四個(gè)等級(jí),分別記作A、B、C、D;并根據(jù)調(diào)查結(jié)果繪制成如圖所示不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中信息解答下列問(wèn)題:
(1)請(qǐng)求出本次被調(diào)查的學(xué)生共多少人,并將條形統(tǒng)計(jì)圖補(bǔ)充完整.
(2)估計(jì)該校1500名學(xué)生中“C等級(jí)”的學(xué)生有多少人?
(3)在“B等級(jí)”的學(xué)生中,初三學(xué)生共有4人,其中1男3女,在這4個(gè)人中,隨機(jī)選出2人進(jìn)行采訪,則所選兩位同學(xué)中有男同學(xué)的概率是多少?請(qǐng)用列表法或樹(shù)狀圖的方法求解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=﹣+bx+c交x軸于點(diǎn)A(﹣2,0)和點(diǎn)B,交y軸于點(diǎn)C(0,3),點(diǎn)D是x軸上一動(dòng)點(diǎn),連接CD,將線段CD繞點(diǎn)D旋轉(zhuǎn)得到DE,過(guò)點(diǎn)E作直線l⊥x軸,垂足為H,過(guò)點(diǎn)C作CF⊥l于F,連接DF.
(1)求拋物線解析式;
(2)若線段DE是CD繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°得到,求線段DF的長(zhǎng);
(3)若線段DE是CD繞點(diǎn)D旋轉(zhuǎn)90°得到,且點(diǎn)E恰好在拋物線上,請(qǐng)求出點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以正方形的中心O為頂點(diǎn)作一個(gè)直角,直角的兩邊分別交正方形的兩邊BC、DC于E、F點(diǎn),問(wèn):
(1)△BOE與△COF有什么關(guān)系?證明你的結(jié)論(提示:正方形的對(duì)角線把正方形分成全等的四個(gè)等腰直角三角形,即正方形的對(duì)角線垂直相等且相互平分);
(2)若正方形的邊長(zhǎng)為2,四邊形EOFC的面積為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB=AC,AD=AE,若添加一個(gè)條件不能得到“△ABD≌△ACE”是( 。
A. ∠ABD=∠ACE B. BD=CE C. ∠BAD=∠CAE D. ∠BAC=∠DAE
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】求多項(xiàng)式9x2+y2﹣6x+2y最小值,并求此時(shí)多項(xiàng)式3x3﹣6x2y+3xy2的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com