【題目】(閱讀)x與代數(shù)式x2+2x1的部分對應(yīng)值如表:

x

3

2

1

0

1

x2+2x1

2

1

2

1

2

可知:當(dāng)x=﹣3時,x2+2x120,當(dāng)x=﹣2時,x2+2x1=﹣10,所以方程x2+2x10的一個解在﹣3和﹣2之間.

(理解)(1)方程x2+2x10的另一個解在兩個連續(xù)整數(shù)      之間.

(應(yīng)用)(2)若關(guān)于x的一元二次方程﹣x2+2x+m0的一個解在12之間,求m的取值范圍.

【答案】(1)0,1;(2)﹣1m0

【解析】

1)根據(jù)x與代數(shù)式x2+2x1的部分對應(yīng)值的表即可得出答案;

2)根據(jù)方程﹣x2+2x+m=0有一個根在12之間知,解之可得.

1)∵當(dāng)x=1時,x2+2x1=20,當(dāng)x=0時,x2+2x1=10,∴方程的另一個根在01之間.

故答案為:0,1;

2)∵y=x2+2x+m=0a=10,∴開口向下,對稱軸為直線x=1,由題意可知一元二次方程﹣x2+2x+m=0的一個解在12之間,∴,解得:﹣1m0

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校計劃開設(shè)四門選修課:樂器、舞蹈、繪畫、書法.為提前了解學(xué)生的選修情況,學(xué)校采取隨機抽樣的方法進行問卷調(diào)查(每個被調(diào)查的學(xué)生必須選擇而且只能選擇其中一門).對調(diào)查結(jié)果進行了整理,繪制成如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給信息解答下列問題:

(1)本次調(diào)查的學(xué)生共有 人,在扇形統(tǒng)計圖中,m的值是

(2)將條形統(tǒng)計圖補充完整;

(3)在被調(diào)查的學(xué)生中,選修書法的有2名女同學(xué),其余為男同學(xué),現(xiàn)要從中隨機抽取2名同學(xué)代表學(xué)校參加某社區(qū)組織的書法活動,請直接寫出所抽取的2名同學(xué)恰好是1名男同學(xué)和1名女同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線yax2+bx+1的頂點為D,與x軸正半軸交于AB兩點,AB左,與y軸正半軸交于點C,當(dāng)△ABD和△OBC均為等腰直角三角形(O為坐標(biāo)原點)時,b的值為( 。

A. 2 B. 2或﹣4 C. 2 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點是⊙外一點,與⊙相切于點,交⊙于點,點,分別為線段,上的動點,若,,則的最小值為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,分別將、沿兩條互相平行的弦AB、CD折疊,折疊后的弧均過圓心,若⊙O的半徑為4,則四邊形ABCD的面積是(  )

A.8B.C.32D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,點EAD上,且BEBC.

(1)EC平分∠BED嗎?證明你的結(jié)論.

(2)AB1,∠ABE45°,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:MON=30°,點A1、A2、A3在射線ON上,點B1、B2、B3…在射線OM上,△A1B1A2、△A2B2A3、△A3B3A4…均為等邊三角形,若OA1=1,則△A6B6A7的邊長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點M的坐標(biāo)是(5,4),⊙M與y軸相切于點C,與x軸相交于A,B兩點.

(1)請直接寫出A,B,C三點的坐標(biāo),并求出過這三點的拋物線解析式;

(2)設(shè)(1)中拋物線解析式的頂點為E,

求證:直線EA與⊙M相切;

(3)在拋物線的對稱軸上,是否存在點P,且點P在x軸的上方,使△PBC是等腰三角形?

如果存在,請求出點P的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,,,點從點開始沿邊向終點的速度移動,與此同時,點從點開始沿邊向終點的速度移動.如果分別從同時出發(fā),當(dāng)點運動到點時,兩點停止運動,設(shè)運動時間為秒.

1)填空:___________________;(用含的代數(shù)式表示)

2)當(dāng)為何值時,的長度等于

3)當(dāng)為何值時,五邊形的面積有最小值?最小值為多少?

查看答案和解析>>

同步練習(xí)冊答案