【題目】如圖,在⊙O中,分別將、沿兩條互相平行的弦AB、CD折疊,折疊后的弧均過圓心,若⊙O的半徑為4,則四邊形ABCD的面積是( 。
A.8B.C.32D.
【答案】B
【解析】
過O作OH⊥AB交⊙O于E,延長EO交CD于G,交⊙O于F,連接OA,OB,OD,根據(jù)平行線的性質(zhì)得到EF⊥CD,根據(jù)折疊的性質(zhì)得到OH=OA,進(jìn)而推出△AOD是等邊三角形,得到D,O,B三點共線,且BD為⊙O的直徑,求得∠DAB=90°,同理,∠ABC=∠ADC=90°,得到四邊形ABCD是矩形,于是得到結(jié)論.
過O作OH⊥AB交⊙O于E,延長EO交CD于G,交⊙O于F,連接OA,OB,OD.
∵AB∥CD,∴EF⊥CD.
∵分別將、沿兩條互相平行的弦AB、CD折疊,折疊后的弧均過圓心,∴OH=OA,∴∠HAO=30°,∴∠AOH=60°,同理∠DOG=60°,∴∠AOD=60°,∴△AOD是等邊三角形.
∵OA=OB,∴∠ABO=∠BAO=30°,∴∠AOB=120°,∴∠AOD+∠AOB=180°,∴D,O,B三點共線,且BD為⊙O的直徑,∴∠DAB=90°,同理,∠ABC=∠ADC=90°,∴四邊形ABCD是矩形,∴AD=AO=4,AB=AD=4,∴四邊形ABCD的面積是16.
故選B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=x2﹣2kx+3k+4.
(1)拋物線經(jīng)過原點時,求k的值.
(2)頂點在x軸上時,求k的值;
(3)頂點在y軸上時,求k的值;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與x軸,y軸分別交于B,C兩點,拋物線 經(jīng)過B,C兩點,點A是拋物線與x軸的另一個交點.
(1)求出點B和點C的坐標(biāo).
(2)求此拋物線的函數(shù)解析式.
(3)在拋物線x軸上方存在一點P(不與點C重合),使,請求出點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)場要建一個飼養(yǎng)場(矩形ABCD)兩面靠現(xiàn)有墻(AD位置的墻最大可用長度為27米,AB位置的墻最大可用長度為15米),另兩邊用木欄圍成,中間也用木欄隔開,分成兩個場地及一處通道,并在如圖所示的三處各留1米寬的門(不用木欄)。建成后木欄總長45米。設(shè)飼養(yǎng)場(矩形ABCD)的一邊AB長為x米.
(1)飼養(yǎng)場另一邊BC= 米(用含x的代數(shù)式表示).
(2)若飼養(yǎng)場的面積為180平方米,求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,以為直徑作⊙,分別交,于點,.
(1)求證:;
(2)若,求的度數(shù);
(3)過點作⊙的切線,交的延長線于點,當(dāng)時,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(閱讀)x與代數(shù)式x2+2x﹣1的部分對應(yīng)值如表:
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | … |
x2+2x﹣1 | … | 2 | ﹣1 | ﹣2 | ﹣1 | 2 | … |
可知:當(dāng)x=﹣3時,x2+2x﹣1=2>0,當(dāng)x=﹣2時,x2+2x﹣1=﹣1<0,所以方程x2+2x﹣1=0的一個解在﹣3和﹣2之間.
(理解)(1)方程x2+2x﹣1=0的另一個解在兩個連續(xù)整數(shù) 和 之間.
(應(yīng)用)(2)若關(guān)于x的一元二次方程﹣x2+2x+m=0的一個解在1和2之間,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的口袋中有4個大小、質(zhì)地完全相同的乒乓球,球面上分別標(biāo)有數(shù)-1,2,-3,4.
(1)搖勻后任意摸出1個球,則摸出的乒乓球球面上的數(shù)是負(fù)數(shù)的概率為________.
(2)搖勻后先從中任意摸出1個球(不放回),再從余下的3個球中任意摸出1個球,用列表或畫樹狀圖的方法求兩次摸出的乒乓球球面上的數(shù)之和是正數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了弘揚(yáng)優(yōu)秀傳統(tǒng)文化,某校組織了一次“詩詞大會”,小明和小麗同時參加,其中,有一道必答題是:從如圖所示的九宮格中選取七個字組成一句唐詩,其答案為“兩個黃鸝鳴翠柳”.
(1)小明回答該問題時,對第二個字是選“個”還是選“只”難以抉擇,若隨機(jī)選擇其中一個,則小明回答正確的概率是__________;
(2)小麗回答該問題時,對第二個字是選“個”還是選“只”、第五個字是選“鳴”還是選“明”都難以抉擇,若分別隨機(jī)選擇,請用列表或畫樹狀圖的方法求小麗回答正確的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線頂點為A(1,2),且過原點,與x軸的另一個交點為B,
(1)求拋物線的解析式和B點坐標(biāo);
(2)拋物線上是否存在點M,使△OBM的面積等于2?若存在,請寫出M點坐標(biāo),若不存在,說明理由;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com