【題目】如圖,在平面直角坐標系中,點M的坐標是(5,4),⊙M與y軸相切于點C,與x軸相交于A,B兩點.

(1)請直接寫出A,B,C三點的坐標,并求出過這三點的拋物線解析式;

(2)設(1)中拋物線解析式的頂點為E,

求證:直線EA與⊙M相切;

(3)在拋物線的對稱軸上,是否存在點P,且點P在x軸的上方,使△PBC是等腰三角形?

如果存在,請求出點P的坐標;如果不存在,請說明理由.

【答案】(1) ;(2)見解析;(3)見解析.

【解析】(1)連接AM,MC,MEx軸于點D,由M點的坐標可求得MC、MD的長,可求得C點坐標,在Rt△ADM中可求得AD,則容易求得A、B坐標;

(2)由A點坐標可求得拋物線解析式,則可求得ME的長,由勾股定理的逆定理可判定△AME為直角三角形,則可證得結論;

(3)可設P點坐標為(5,t),則可表示出PB、CP、結合BC的長,當△PBC為等腰三角形時,則有PB=BC,CP=BC,PC=PB三種情況,分別求解即可;

1A,B,C的坐標分別是A2 ,0 ),B8 ,0 ),C0 ,4 );---3

設拋物線解析式為,將(0,4)代入得.

2)證明:把化為y=x52

E5,﹣),

DE=

ME=MD+DE=4+=,EA2=32+(2=,

MA2+EA2=52+=,ME2=

MA2+EA2=ME2,

∴∠MAE=90°

EAMA

EA與⊙M相切;

3)解:存在;點P坐標為(5,4),或(5,),或(54+);理由如下:

由勾股定理得:BC===4,

分三種情況:

①當PB=PC時,點PBC的垂直平分線上,點PM重合,

P5,4);

②當BP=BC=4時,如圖2所示:

PD===,

P5);

③當PC=BC=4時,連接MC,如圖3所示:

則∠PMC=90°,

根據(jù)勾股定理得:PM===

PD=4+,

P5,4+);

綜上所述:存在點P,且點Px軸的上方,使△PBC是等腰三角形,

P的坐標為(5,4),或(5,),或(5,4+).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有一座拋物線形拱橋,在正常水位時水面AB的寬為20m,如果水位上升3m時,水面CD的寬是10m

1)建立如圖所示的直角坐標系,求此拋物線的解析式;

2)現(xiàn)有一輛載有救援物資的貨車從甲地出發(fā)需經(jīng)過此橋開往乙地,已知甲地距此橋280km(橋長忽略不計).貨車正以每小時40km的速度開往乙地,當行駛1小時時,忽然接到緊急通知:前方連降暴雨,造成水位以每小時0.25m的速度持續(xù)上漲(貨車接到通知時水位在CD處,當水位達到橋拱最高點O時,禁止車輛通行),試問:如果貨車按原來速度行駛,能否安全通過此橋?若能,請說明理由;若不能,要使貨車安全通過此橋,速度應超過每小時多少千米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,C、D是⊙O上的點,且OC∥BD,AD分別與BC、OC相交于 點E、F.若∠CBD=36°,則下列結論中不正確的是

A. ∠AOC=72° B. ∠AEC=72° C. AF=DF D. BD=20F

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】△ABC中,AB=AC,點D是直線BC上一點(不與B、C重合),以AD為一邊在AD右側△ADE,使AD=AE,∠DAE =∠BAC,連接CE.

(1)如圖1,當點D在線段BC上,如果∠BAC=90°,則∠BCE=________度;

(2)設,

①如圖2,當點在線段BC上移動,則,之間有怎樣的數(shù)量關系?請說明理由;

②當點在直線BC上移動,則,之間有怎樣的數(shù)量關系?請直接寫出你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,數(shù)軸的單位長度為1


1)如果點AD表示的數(shù)互為相反數(shù),那么點B表示的數(shù)是多少?
2)如果點BD表示的數(shù)互為相反數(shù),那么圖中表示的四個點中,哪一點表示的數(shù)的絕對值最大?為什么?
3)當點B為原點時,若存在一點MA的距離是點MD的距離的2倍,則點M所表示的數(shù)是____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD中,對角線AC=6,BD=8,M、N分別是BC、CD的中點,P是線段BD上的一個動點,則PM+PN的最小值是 ____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,點 E、F分別為邊 AD、CD上的動點(都與菱形的頂點不重合),聯(lián)結 EF、BE、BF .

(1)若∠A=60°,且 AE+CF=AB,判斷△BEF 的形狀,并說明理由;

(2)在(1)的條件下,設菱形的邊長為a,求△BEF面積的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,數(shù)軸上A,B兩點對應的有理數(shù)分別為10和15,點P從點A出發(fā),以每秒1個單位長度的速度沿數(shù)軸正方向運動,點Q同時從原點O出發(fā),以每秒2個單位長度的速度沿數(shù)軸正方向運動,設運動時間為t秒.

(1)當0<t<5時,用含t的式子填空:

BP=_______,AQ=_______;

(2)當t=2時,求PQ的值;

(3)當PQ=AB時,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某汽車專賣店銷售A,B兩種型號的新能源汽車.上周售出1A型車和3B型車,銷售額為96萬元;本周已售出2A型車和1B型車,銷售額為62萬元.

1)求每輛A型車和B型車的售價各為多少萬元?

2)甲公司擬向該店購買AB兩種型號的新能源汽車共6輛,且A型號車不少于2輛,購車費不少于130萬元,則有哪幾種購車方案?

查看答案和解析>>

同步練習冊答案