如圖所示,設(shè)是等邊三角形內(nèi)任意一點,△是由△旋轉(zhuǎn)得到的,則_______().

     解析:連接由旋轉(zhuǎn)的性質(zhì)知,,

所以∠,所以△,所以,所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在直線l上依次擺放著七個正方形,已知S1=1,S2=2,S3=3,S4=4,另外三個正方形的邊長分別為a,b,c.
(1)圖中Rt△ABC與
 
全等,所以DE=
 
,a=
AC2+BC2
=
 

(2)用上述(1)中思路求b、c的值.(提示:△ABC與△BDE的斜邊相等,并且有一個角是直角,只需設(shè)一個銳角相等即可)
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某數(shù)學(xué)研究所門前有一個邊長為4米的正方形花壇,花壇內(nèi)部要用紅、黃、紫三種顏色的花草種植成如圖所示的圖案,圖案中AE=MN.準備在形如Rt△MEH的四個全等三角形內(nèi)種植黃色花草,在形如Rt△AEH的四個全等三角形內(nèi)種植紅色花草,在正方形MNPQ內(nèi)種植紫色花草,每種花草的價格如下表:
品  種 紅色花草 黃色花草 紫色花草
價格(元/米2 60 80 120
設(shè)AE的長為x米,正方形EFGH的面積為S平方米,買花草所需的費用為W元,解答下列問題:精英家教網(wǎng)
(1)S與x之間的函數(shù)關(guān)系式為S=
 
;
(2)求W與x之間的函數(shù)關(guān)系式,并求所需的最低費用是多少元;
(3)當買花草所需的費用最低時,求EM的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在“五個重慶”建設(shè)中,為了提高市民的宜居環(huán)境,某區(qū)規(guī)劃修建一個文化廣場(平面圖形如圖所示),其中四邊形ABCD是矩形,分別以AB、BC、CD、DA邊為直徑向外作半圓,若整個廣場的周長為628米,設(shè)矩形的邊長AB=y米,BC=x米.(注:取 π=3.14)
(1)試用含x的代數(shù)式表示y;
(2)現(xiàn)計劃在矩形ABCD區(qū)域上種植花草和鋪設(shè)鵝卵石等,平均每平方米造價為428 元,在四個半圓的區(qū)域上種植草坪及鋪設(shè)花崗巖,平均每平方米造價為400元;
①設(shè)該工程的總造價為W元,求W關(guān)于x的函數(shù)關(guān)系式;
②若該工程政府投入1千萬元,問能否完成該工程的建設(shè)任務(wù)?若能,請列出設(shè)計方案;若不能,請說明理由;
③若該工程在政府投入1千萬元的基礎(chǔ)上,又增加企業(yè)募捐資金64.82萬元,但要求矩形的邊BC的長不超過AB長的三分之二,且建設(shè)廣場恰好用完所有資金,問:能否完成該工程的建設(shè)任務(wù)?若能,請列出所有可能的設(shè)計方案;若不能精英家教網(wǎng),請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某數(shù)學(xué)研究所門前有一個邊長為4米的正方形花壇,花壇內(nèi)部要用紅、黃、紫三種顏色的花草種植成如圖所示的圖案,圖案中.準備在形如Rt的四個全等三角形內(nèi)種植紅色花草,在形如Rt△EMH的四個全等三角形內(nèi)種植黃色花草,在正方形內(nèi)種植紫色花草,每種花草的價格如下表:
品種
紅色花草
黃色花草
紫色花草
價格(元/米2
60
80
120
設(shè)的長為米,正方形的面積為平方米,買花草所需的費用為元,解答下列問題:
(1)之間的函數(shù)關(guān)系式為                ;
(2)求之間的函數(shù)關(guān)系式,并求所需的最低費用是多少元;
(3)當買花草所需的費用最低時,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆廣東省九年級第一次月考考試數(shù)學(xué)卷 題型:選擇題

某數(shù)學(xué)研究所門前有一個邊長為4米的正方形花壇,花壇內(nèi)部要用紅、黃、紫三種顏色的花草種植成如圖所示的圖案,圖案中.準備在形如Rt的四個全等三角形內(nèi)種植紅色花草,在形如Rt△EMH的四個全等三角形內(nèi)種植黃色花草,在正方形內(nèi)種植紫色花草,每種花草的價格如下表:

品種

紅色花草

黃色花草

紫色花草

價格(元/米2

60

80

120

設(shè)的長為米,正方形的面積為平方米,買花草所需的費用為元,解答下列問題:

(1)之間的函數(shù)關(guān)系式為                

(2)求之間的函數(shù)關(guān)系式,并求所需的最低費用是多少元;

(3)當買花草所需的費用最低時,求的長.

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊答案