【題目】如圖,在平面直角坐標系xOy中,一次函數(shù)y1=k1x+1的圖象與y軸交于點A,與x軸交于點B,與反比例y2=象分別交于點M,N,已知△AOB的面積為1,點M的縱坐標為2.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)直接寫出y1>y2時,x取值范圍.
【答案】(1) y=-x+1,y=-; (2) x<-2或0<x<4.
【解析】(1)先由一次函數(shù)的解析式為y1=k1x+1,求出點A與點B的坐標,再根據(jù)△AOB的面積為1,可得到k1的值,從而求出一次函數(shù)的解析式;進而得到點M的坐標,然后運用待定系數(shù)法即可求出反比例函數(shù)的解析式;
(2)y1>y2即一次函數(shù)值大于反比例函數(shù)值,只需觀察一次函數(shù)的圖象落在反比例函數(shù)的圖象的上方時自變量的取值范圍即可,為此,先求出它們的交點坐標,再根據(jù)函數(shù)圖象,可知在點M的左邊以及原點和點N之間的區(qū)間,y1>y2.
(1)∵一次函數(shù)y1=k1x+1的圖象與y軸交于點A,與x軸交于點B,
∴A(0,1),B(﹣,0).
∵△AOB的面積為1,
∴×OB×OA=1,
×(﹣)×1=1,
∴k1=﹣,
∴一次函數(shù)的解析式為y1=﹣x+1;
當y=2時,﹣x+1=2,解得x=﹣2,
∴M的坐標為(﹣2,2).
∵點M在反比例函數(shù)的圖象上,
∴k2=﹣2×2=﹣4,
∴反比例函數(shù)的解析式為y2=﹣;
(2)解方程組,
得或,
故當y1>y2時,x<﹣2或0<x<4.
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料并填空:
(1)探究:平面上有個點()且任意3個點不在同一條直線上,經(jīng)過每兩點畫一條直線,一共能畫多少條直線?
我們知道,兩點確定一條直線.平面上有2個點時,可以畫條直線,平面內(nèi)有3個點時,一共可以畫條直線,平面上有4個點時,一共可以畫條直線,平面內(nèi)有5個點時,一共可以畫________條直線,…平面內(nèi)有個點時,一共可以畫________條直線.
(2)運用:某足球比賽中有22個球隊進行單循環(huán)比賽(每兩隊之間必須比賽一場),一共要進行多少場比賽?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】華聯(lián)超市第一次用7000元購進甲、乙兩種商品,其中甲商品的件數(shù)是乙商品件數(shù)的2倍,甲、乙兩種商品的進價和售價如表:(注:獲利=售價﹣進價)
甲 | 乙 | |
進價(元/件) | 20 | 30 |
售價(元/件) | 25 | 40 |
(1)該超市購進甲、乙兩種商品各多少件?
(2)該超市將第一次購進的甲、乙兩種商品全部賣完后一共可獲得多少利潤?
(3)該超市第二次以第一次的進價又購進甲、乙兩種商品,其中甲商品的件數(shù)不變,乙商品的件數(shù)是第一次的3倍:甲商品按原價銷售,乙商品打折銷售,第二次兩種商品都售完以后獲得的總利潤比第一次獲得的總利潤多800元,求第二次乙商品是按原價打幾折銷售?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,AC=2,BC=5,點D是BC邊上一點且CD=1,點P是線段DB上一動點,連接AP,以AP為斜邊在AP的下方作等腰Rt△AOP.當P從點D出發(fā)運動至點B停止時,點O的運動路徑長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,AB為半圓O的直徑,D為BA的延長線上一點,DC為半圓O的切線,切點為C.
(1)求證:∠ACD=∠B;
(2)如圖2,∠BDC的平分線分別交AC,BC于點E,F(xiàn);
①求tan∠CFE的值;
②若AC=3,BC=4,求CE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】衡陽市城市標志來雁塔坐落在衡陽市雁峰公園內(nèi).如圖,為了測量來雁塔的高度,在E處用高為1.5 m的測角儀AE,測得塔頂C的仰角為30°,再向塔身前進10.4 m,又測得塔頂C的仰角為60°,求來雁塔的高度.(結(jié)果精確到0.1 m)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)化簡:(+1)÷,并從﹣1、0、1、2這四個數(shù)中選取一個合適的數(shù)作為x的值代入求值.
(2)解方程: +2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將若干枚棋子平均分成三堆(每堆至少2枚),分別放在左邊、中間、右邊,并按如下順序進行操作:
第1次:從右邊堆中拿出 2枚棋子放入中間一堆;
第2次:從左邊一堆中拿出1枚棋子放入中間一堆;
第3次:從中間一堆中拿出幾枚棋子放入右邊一堆,并使右邊一堆的棋子數(shù)為最初的2倍.
(1)操作結(jié)束后,若右邊堆比左邊一堆多15枚棋子,問共有_____枚棋子;
(2)通過計算得出:無論最初的棋子數(shù)為多少,按上述方法完成操作后,中間一堆總是剩下_____枚棋子.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com