【題目】衡陽市城市標志來雁塔坐落在衡陽市雁峰公園內(nèi).如圖,為了測量來雁塔的高度,E處用高為1.5 m的測角儀AE,測得塔頂C的仰角為30°,再向塔身前進10.4 m,又測得塔頂C的仰角為60°,求來雁塔的高度.(結(jié)果精確到0.1 m)

【答案】來雁塔的高度約為10.5 m.

【解析】

首先證明AB=BC=10.4 m,在Rt△BCD中,根據(jù)CBD的正弦函數(shù)求出CD的長,然后用CD的長加上測角儀的高即可解決問題.

∵∠CBD60°,∠CAD30°,

∴∠ACB30°

ABBC10.4 m.

RtCBD中,BC10.4 m,∠CBD60°,

CDBCsinCBD 10.4×≈9.0,

∴塔高為9.01.510.5 m.

答:來雁塔的高度約為10.5 m.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線軸于點,交軸于點,是直線上的一個動點,過點軸于點軸于點,的長的最小值為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】骰子是一種特別的數(shù)字立方體(見下圖),它符合規(guī)則:相對兩面的點數(shù)之和總是7,下面四幅圖中可以折成符合規(guī)則的骰子的是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,一次函數(shù)y1=k1x+1的圖象與y軸交于點A,與x軸交于點B,與反比例y2=象分別交于點M,N,已知△AOB的面積為1,點M的縱坐標為2.

(1)求一次函數(shù)與反比例函數(shù)的解析式;

(2)直接寫出y1>y2時,x取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了美化環(huán)境,建設(shè)宜居成都,我市準備在一個廣場上種植甲、乙兩種花卉.經(jīng)市場調(diào)查,甲種花卉的種植費用(元)與種植面積之間的函數(shù)關(guān)系如圖所示,乙種花卉的種植費用為每平方米100.

(1)直接寫出當時,的函數(shù)關(guān)系式;

(2)廣場上甲、乙兩種花卉的種植面積共,若甲種花卉的種植面積不少于,且不超過乙種花卉種植面積的2倍,那么應(yīng)該怎樣分配甲、乙兩種花卉的種植面積才能使種植費用最少?最少總費用為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】金橋?qū)W校科技體藝節(jié)期間,八年級數(shù)學活動小組的任務(wù)是測量學校旗桿AB的高.如圖1-3-32,他們在旗桿正前方臺階上的點C測得旗桿頂端A的仰角為45°,朝著旗桿的方向走到臺階下的點F,測得旗桿頂端A的仰角為60°.已知升旗臺的高度BE1 m,C距地面的高度CD3 m,臺階的坡角為30°,且點E,F,D在同一直線上,求旗桿AB的高.(計算結(jié)果精確到0.1 m,參考數(shù)據(jù):≈1.41,≈1.73)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,從A地到B地的公路需要經(jīng)過C地,圖中AC=10千米,∠CAB=25°,∠CBA=37°。因城市規(guī)劃的需要,將在AB兩地之間修建一條筆直的公路。

1)求改直后的公路AB的長;

2)問:公路改造后比原來縮短了多少千米?

sin25°≈0.42,cos25°≈0.91sin37°≈0.60,tan37°≈0.75

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖AB是△ABC的外接圓⊙O的直徑,過點C作⊙O的切線CM,延長BC到點D,使CD=BC,連接AD交CM于點E,若⊙OD半徑為3,AE=5,

(1)求證:CM⊥AD;

(2)求線段CE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,點P的坐標為(x1,y1),點Q的坐標為(x2,y2),且x1x2,y1y2,若P,Q為某個矩形的兩個頂點,且該矩形的邊均與某條坐標軸垂直,則稱該矩形為點P,Q的“相關(guān)矩形”,如圖為點P,Q的“相關(guān)矩形”示意圖.

(1)已知點A的坐標為(1,0),

①若點B的坐標為(3,1),求點A,B的“相關(guān)矩形”的面積;

②點C在直線x=3上,若點AC的“相關(guān)矩形”為正方形,求直線AC的表達式;

(2)正方形RSKT頂點R的坐標為(-1,1),K的坐標為(2,-2),點M的坐標為(m,3),若在正方形RSKT邊上存在一點N,使得點M,N的“相關(guān)矩形”為正方形,求m的取值范圍.

查看答案和解析>>

同步練習冊答案