【題目】如圖 ,△ABC是等腰直角三角形,∠A=90o,點P、Q分別是AB、AC上的動點,且滿足BP=AQ,D是BC的中點。
(1)求證:△PDQ是等腰直角三角形;
(2)當點P運動到什么位置時,四邊形APDQ是正方形,說明理由。
科目:初中數(shù)學 來源: 題型:
【題目】已知如圖,∠COD=90°,直線AB與OC交于點B,與OD交于點A,射線OE和射線AF交于點G.
(1)若OE平分∠BOA,AF平分∠BAD,∠OBA=30°,則∠OGA=
(2)若∠GOA=∠BOA,∠GAD=∠BAD,∠OBA=30°,則∠OGA=
(3)將(2)中“∠OBA=30°”改為“∠OBA=α”,其余條件不變,則∠OGA= α (用含α的代數(shù)式表示)
(4)若OE將∠BOA分成1:2兩部分,AF平分∠BAD,∠ABO=α(30°<α<90°),求∠OGA的度數(shù)(用含α的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在四邊形ABCD的邊AB上任取一點E(點E不與點A、點B重合),分別連接ED,EC,可以把四邊形ABCD分成三個三角形,如果其中有兩個三角形相似,我們就把E叫做四邊形ABCD的邊AB上的相似點;如果這三個三角形都相似,我們就把E叫做四邊形ABCD的邊AB上的強相似點.解決問題:
(1)如圖1,∠A=∠B=∠DEC=55°,試判斷點E是否是四邊形ABCD的邊AB上的相似點,并說明理由;
(2)如圖2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四點均在正方形網(wǎng)格(網(wǎng)格中每個小正方形的邊長為1)的格點(即每個小正方形的頂點)上,試在圖2中畫出矩形ABCD的邊AB上的一個強相似點E.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】等腰Rt△ABC中,∠BAC=90°,AB=AC,點A、點B分別是y軸、x軸上兩個動點,直角邊AC交x軸于點D,斜邊BC交y軸于點E;
(1)如圖(1),已知C點的橫坐標為-1,直接寫出點A的坐標;
(2)如圖(2), 當?shù)妊?/span>Rt△ABC運動到使點D恰為AC中點時,連接DE,求證:∠ADB=∠CDE;
(3)如圖(3), 若點A在x軸上,且A(-4,0),點B在y軸的正半軸上運動時,分別以OB、AB為直角邊在第一、二象限作等腰直角△BOD和等腰直角△ABC,連結(jié)CD交y軸于點P,問當點B在y軸的正半軸上運動時,BP的長度是否變化?若變化請說明理由,若不變化,請求出BP的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系中,C(0,5)、D(a,5)(a>0),A、B在x軸上,∠1=∠D,請寫出∠ACB和∠BED數(shù)量關(guān)系以及證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com