【題目】等腰Rt△ABC中,∠BAC=90°,AB=AC,點A、點B分別是y軸、x軸上兩個動點,直角邊AC交x軸于點D,斜邊BC交y軸于點E;
(1)如圖(1),已知C點的橫坐標(biāo)為-1,直接寫出點A的坐標(biāo);
(2)如圖(2), 當(dāng)?shù)妊?/span>Rt△ABC運動到使點D恰為AC中點時,連接DE,求證:∠ADB=∠CDE;
(3)如圖(3), 若點A在x軸上,且A(-4,0),點B在y軸的正半軸上運動時,分別以OB、AB為直角邊在第一、二象限作等腰直角△BOD和等腰直角△ABC,連結(jié)CD交y軸于點P,問當(dāng)點B在y軸的正半軸上運動時,BP的長度是否變化?若變化請說明理由,若不變化,請求出BP的長度.
【答案】(1)A(0,1);(2)證明見解析;(3)BP的長度不變;理由見解析.
【解析】
試題分析:(1)過點C作軸于點F,易證,∴CF=OA=1,∴A(0,1);
(2)過點C作交y軸于點G,易證,則可得CG=AD=CD,由于∠ADB=∠CGA,
∠DCE=∠GCE=45°,可證,則∠CDE=∠AGC,∴∠ADB=∠CDE;
(3)過點C作CE⊥y軸于點E,∵∠BAC=90°,∴∠CBE+∠ABO=90°,可證△CBE≌△BAO,∴CE=BO,BE=AO=4,∵BD=BO,∴CE=BD.可證△CPE≌△DPB.∴BP=EP=2 .
試題解析:
(1)如圖,過點C作軸于點F,易證(AAS),
∴CF=OA=1,
∴A(0,1);
(2)如圖,過點C作交y軸于點G,則(ASA),
∴CG=AD=CD,∠ADB=∠CGA,
∵∠DCE=∠GCE=45°,
∴(SAS),
∴∠CDE=∠AGC,
∴∠ADB=∠CDE;
(4)BP的長度不變,理由如下:
過點C作CE⊥y軸于點E,
∵∠BAC=90°,
∴∠CBE+∠ABO=90°,
∵∠BAO+∠ABO=90°,
∴∠CBE=∠BAO.
∵∠CEB=∠AOB=90°,AB=AC,
∴△CBE≌△BAO(AAS),
∴CE=BO,BE=AO=4,
∵BD=BO,∴CE=BD.
∵∠CEP=∠DBP=90°, ∠CPE=∠DPB,
∴△CPE≌△DPB(AAS).
∴BP=EP=2 .
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在數(shù)軸l上,一動點Q從原點O出發(fā),沿直線l以每秒鐘2個單位長度的速度來回移動,其移動方式是先向右移動1個單位長度,再向左移動2個單位長度,又向右移動3個單位長度,再向左移動4個單位長度,又向右移動5個單位長度…
(1)求出5秒鐘后動點Q所處的位置;
(2)如果在數(shù)軸l上還有一個定點A,且A與原點O相距20個單位長度,問:動點Q從原點出發(fā),可能與點A重合嗎?若能,則第一次與點A重合需多長時間?若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖 ,△ABC是等腰直角三角形,∠A=90o,點P、Q分別是AB、AC上的動點,且滿足BP=AQ,D是BC的中點。
(1)求證:△PDQ是等腰直角三角形;
(2)當(dāng)點P運動到什么位置時,四邊形APDQ是正方形,說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,線段AC=n+1(其中n為正整數(shù)),點B在線段AC上,在線段AC同側(cè)作正方形ABMN及正方形BCEF,連接AM、ME、EA得到△AME.當(dāng)AB=1時,△AME的面積記為S1;當(dāng)AB=2時,△AME的面積記為S2;當(dāng)AB=3時,△AME的面積記為
S3;則S3﹣S2= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)舍大門是一個木制矩形欄柵,它高為2m,寬為1.5m,現(xiàn)需要在相對的頂點間用一塊木棒加固,模板的長為______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校八年級近期實行小班教學(xué),若每間教室安排20名學(xué)生,則缺少3間教室;若每間教室安排24名學(xué)生,則空出一間教室.問這所學(xué)校共有教室多少間?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com