某校有9名同學(xué)報名參加科技競賽,學(xué)校通過測試取前4名參加決賽,測試成績各不相同,小英已經(jīng)知道了自己的成績,她想知道自己能否參加決賽,還需要知道這9名同學(xué)測試成績的
A.中位數(shù) B.平均數(shù) C.眾數(shù) D.方差
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖所示,P為平行四邊形內(nèi)任一點(diǎn),△PAB,△PBC,△PCD面積分別為3,4,5,則△PAD的面積為( 。
A. 3 B. 4 C. 5 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
西部大開發(fā)戰(zhàn)略是黨中央面向21世紀(jì)的重大決策,我國西部地區(qū)面積為6 400 000平方千米,將6 400 000用科學(xué)記數(shù)法表示應(yīng)為
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
關(guān)于x的一元二次方程有兩個不相等的實(shí)數(shù)根.
(1)求k的取值范圍.
(2)求當(dāng)k取何正整數(shù)時,方程的兩根均為整數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在平面直角坐標(biāo)系中,已知拋物線y=-x2+bx+c (b,c為常數(shù))的頂點(diǎn)為P,等腰直角三角形ABC的頂點(diǎn)A的坐標(biāo)為(0,–1),C的坐標(biāo)為(4,3),直角頂點(diǎn)B在第四象限.
(1)如圖,若該拋物線過A,B兩點(diǎn),求b,c的值;
(2)平移(1)中的拋物線,使頂點(diǎn)P在直線AC上滑動,且與直線AC交于另一點(diǎn)Q.
①點(diǎn)M在直線AC下方,且為平移前(1)中的拋物線上的點(diǎn),當(dāng)以M,P,Q三點(diǎn)為頂點(diǎn)的三角形是以PQ為腰的等腰直角三角形時,求點(diǎn)M的坐標(biāo);
②取BC的中點(diǎn)N,連接NP,BQ.當(dāng)取最大值時,點(diǎn)Q的坐標(biāo)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
一次函數(shù)的圖象過點(diǎn)(0,1),且函數(shù)y的值隨自變量x的增大而減小,請寫出一個符合條件的函數(shù)解析式 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于一、三象限的A、B兩點(diǎn),與x軸交于點(diǎn)C.已知,,.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)求△OBC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
概念:點(diǎn)P、Q分別是兩條線段a和b上任意一點(diǎn),線段PQ長度的最小值叫做線段a與線段b的
“理想距離”.已知O(0,0),A(,1),B(m,n),C(m,n+2)是平面直角坐標(biāo)系中四點(diǎn).
(1) 根據(jù)上述概念,根據(jù)上述概念,完成下面的問題(直接寫答案)
① 當(dāng)m=,n=1時,如圖13-1,線段BC與線段OA的理想距離是 2
;
② 當(dāng)m=,n=2時,如圖13-2,線段BC與線段OA的理想距離為 ;
③ 當(dāng)m=,若線段BC與線段OA的理想距離為,則n的取值范圍是 .
(2)如圖13-3,若點(diǎn)B落在圓心為A,半徑為1的圓上,
當(dāng)n≥1時,線段BC與線段OA的理想距離記為d,則d的最小值為 (說明理由)
(3)當(dāng)m的值變化時,動線段BC與線段OA的距離始終為1,線段BC的中點(diǎn)為G,
求點(diǎn)G隨線段BC運(yùn)動所走過的路徑長是多少?
|
|
|
|
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com