【題目】拋物線b,c為常數(shù))與x軸交于點(diǎn),與y軸交于點(diǎn)A,點(diǎn)E為拋物線頂點(diǎn)。

(Ⅰ)當(dāng)時(shí),求點(diǎn)A,點(diǎn)E的坐標(biāo);

(Ⅱ)若頂點(diǎn)E在直線上,當(dāng)點(diǎn)A位置最高時(shí),求拋物線的解析式;

(Ⅲ)若,當(dāng)滿足值最小時(shí),求b的值。

【答案】(Ⅰ);(Ⅱ);(Ⅲ).

【解析】

)將(-1,0),(3,0)代入拋物線的解析式求得b、c的值,確定解析式,從而求出拋物線與y軸交于點(diǎn)A的坐標(biāo),運(yùn)用配方求出頂點(diǎn)E的坐標(biāo)即可;

)先運(yùn)用配方求出頂點(diǎn)E的坐標(biāo),再根據(jù)頂點(diǎn)E在直線上得出吧bc的關(guān)系,利用二次函數(shù)的性質(zhì)得出當(dāng)b=1時(shí),點(diǎn)A位置最高,從而確定拋物線的解析式;

)根據(jù)拋物線經(jīng)過(-10)得出c=b+1,再根據(jù)()中頂點(diǎn)E的坐標(biāo)得出E點(diǎn)關(guān)于x軸的對(duì)稱點(diǎn)的坐標(biāo),然后根據(jù)A、P兩點(diǎn)坐標(biāo)求出直線AP的解析式,再根據(jù)點(diǎn)在直線AP上,此時(shí)值最小,從而求出b的值.

解:()把點(diǎn)代入函數(shù),

。解得

)由,得

∵點(diǎn)E在直線上,

當(dāng)時(shí),點(diǎn)A是最高點(diǎn)此時(shí),

):拋物線經(jīng)過點(diǎn),有

E關(guān)于x軸的對(duì)稱點(diǎn)

設(shè)過點(diǎn)A,P的直線為.代入,得

把點(diǎn)代入.

,即

解得,。

舍去.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線平移后過點(diǎn)A(8,,0)和原點(diǎn),頂點(diǎn)為B,對(duì)稱軸與軸相交于點(diǎn)C,與原拋物線相交于點(diǎn)D

(1)求平移后拋物線的解析式并直接寫出陰影部分的面積;

(2)如圖2,直線AB與軸相交于點(diǎn)P,點(diǎn)M為線段OA上一動(dòng)點(diǎn),為直角,邊MNAP相交于點(diǎn)N,設(shè),試探求:

為何值時(shí)為等腰三角形;

為何值時(shí)線段PN的長(zhǎng)度最小,最小長(zhǎng)度是多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖等邊ABC的邊長(zhǎng)為4cm,點(diǎn)P,點(diǎn)Q同時(shí)從點(diǎn)A出發(fā)點(diǎn),Q沿AC1cm/s的速度向點(diǎn)C運(yùn)動(dòng),點(diǎn)P沿ABC2cm/s的速度也向點(diǎn)C運(yùn)動(dòng),直到到達(dá)點(diǎn)C時(shí)停止運(yùn)動(dòng),若APQ的面積為Scm2),點(diǎn)Q的運(yùn)動(dòng)時(shí)間為ts),則下列最能反映St之間大致圖象是( 。

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BD⊙O的直徑, AC⊙O上的兩點(diǎn),且AB=ACADBC的延長(zhǎng)線交于點(diǎn)E

1)求證:△ABD∽△AEB;

2)若AD=1,DE=3,求BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在每個(gè)小正方形的邊長(zhǎng)為1的網(wǎng)格中,點(diǎn)都在格點(diǎn)上。

(Ⅰ)AC的長(zhǎng)是_____________

(Ⅱ)將四邊形折疊,使點(diǎn)C與點(diǎn)4重合,折痕EFBC于點(diǎn)E,交AD于點(diǎn)F,點(diǎn)D的對(duì)應(yīng)點(diǎn)為Q,得五邊形.請(qǐng)用無刻度的直尺在網(wǎng)格中畫出折疊后的五邊形,并簡(jiǎn)要說明點(diǎn)的位置是如何找到的____________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某興趣小組為了了解本校學(xué)生參加課外體育鍛煉情況,隨機(jī)抽取本校40名學(xué)生進(jìn)行問卷調(diào)查,統(tǒng)計(jì)整理并繪制了如下兩幅尚不完整的統(tǒng)計(jì)圖:

根據(jù)以上信息解答下列問題:

1)課外體育鍛煉情況統(tǒng)計(jì)圖中,經(jīng)常參加所對(duì)應(yīng)的圓心角的度數(shù)為 ;經(jīng)常參加課外體育鍛煉的學(xué)生最喜歡的一種項(xiàng)目中,喜歡足球的人數(shù)有 人,補(bǔ)全條形統(tǒng)計(jì)圖.

2)該校共有1200名學(xué)生,請(qǐng)估計(jì)全校學(xué)生中經(jīng)常參加課外體育鍛煉并喜歡的項(xiàng)目是乒乓球的人數(shù)有多少人?

3)若在乒乓球、籃球足球、羽毛球項(xiàng)目中任選兩個(gè)項(xiàng)目成立興趣小組,請(qǐng)用列表法或畫樹狀圖的方法求恰好選中乒乓球、籃球這兩個(gè)項(xiàng)目的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將正面分別寫著數(shù)字,1,3,6的四張卡片(卡片除數(shù)字外,其它都相同)洗勻后,背面向上放在桌子上,從中先隨機(jī)抽取一張卡片,記下卡片上的數(shù)字,不放回,再從中任取一張卡片,記下數(shù)字.

1)請(qǐng)用列表或畫樹狀圖法(樹狀圖也稱樹形圖)中的一種方法,列出所有可能出現(xiàn)的結(jié)果;

2)請(qǐng)計(jì)算兩次摸出的卡片上的數(shù)字之和大于4的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,ABAC,ADBCDEAC邊上一點(diǎn),⊙OB、D、E三點(diǎn),分別交AC、AB于點(diǎn)F、G,連接EG、BF分別與AD交于點(diǎn)M、N

1)求證:∠AMG=∠BND;

2)若點(diǎn)EAC的中點(diǎn),求證:BFBC;

3)在(2)的條件下,作EHEGAD于點(diǎn)H,若EHEG4,過點(diǎn)GGKBF于點(diǎn)K,點(diǎn)P在線段GK上,點(diǎn)Q在線段BK上,連接BP、GQ,若∠KGQ2GBPGQ15,求GP的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,矩形ABCD中,AB5,BC3EAD上一點(diǎn),把矩形ABCD沿BE折疊,若點(diǎn)A恰好落在CD上點(diǎn)F處,則AE的長(zhǎng)為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案