【題目】如圖,點(diǎn)上(除點(diǎn)外)一點(diǎn),以為邊作等邊,與交于兩點(diǎn).記的長為,點(diǎn)的距離為,點(diǎn)的距離為

小騰根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì),,的長度之間的關(guān)系進(jìn)行了探究.

下面是小騰的探究過程,請(qǐng)補(bǔ)充完整:

1)對(duì)于點(diǎn)上的不同位置,畫圖、測(cè)量,得到了,,的長度幾組值,如下表:

,的長度這三個(gè)量中,確定 是自變量, 都是這個(gè)自變量的函數(shù);

2)在同一平面直角坐標(biāo)系中,畫出(1)中所確定的函數(shù)的圖像;

3)結(jié)合函數(shù)圖像,解決問題:當(dāng)點(diǎn)平分線上時(shí),的長約為 cm

【答案】1,,;(2)詳見解析;(3

【解析】

1)根據(jù)題意,點(diǎn)上(除點(diǎn)外)的動(dòng)點(diǎn),分析即可得知為自變量,、為這個(gè)自變量的函數(shù);

2)在同一平面直角坐標(biāo)系中,描點(diǎn)連線即可;

(3)根據(jù)角平分線性質(zhì),觀察圖像求解即可.

解:(1)根據(jù)題意,點(diǎn)上(除點(diǎn)外)的動(dòng)點(diǎn),且的長為,點(diǎn)的距離為,點(diǎn)的距離為,

為自變量,、為這個(gè)自變量的函數(shù),

故答案為:,

2)在同一平面直角坐標(biāo)系中描點(diǎn),畫圖,所得函數(shù)圖像如下:

3)∵點(diǎn)平分線上,

,

∴兩函數(shù)交點(diǎn)即為情況下的描點(diǎn),

觀察函數(shù)圖像可知,此時(shí)約為6.4cm

∴當(dāng)點(diǎn)平分線上時(shí),的長約為6.4cm,

故答案為:6.4.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線y=4x+4x軸、y軸分別交于點(diǎn)A,B,拋物線y=ax2+bx-3a經(jīng)過點(diǎn)A,將點(diǎn)B向右平移5個(gè)單位長度得到點(diǎn)C.若拋物線與線段BC恰有一個(gè)公共點(diǎn),結(jié)合函數(shù)圖象,a的取值范圍是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,以點(diǎn)M(1,0)為圓心的圓與y軸,x軸分別交于點(diǎn)A,BC,D,與⊙M相切于點(diǎn)H的直線EFx軸于點(diǎn)E,0),交y軸于點(diǎn)F0,).

(1)⊙M的半徑r;

(2)如圖2所示,連接CH,弦HQx軸于點(diǎn)P,若cos∠QHC=,求的值;

(3)如圖3所示,點(diǎn)P⊙M上的一個(gè)動(dòng)點(diǎn),連接PE,PF,求PF+PE的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖拋物線x軸交于點(diǎn)A(-10),頂點(diǎn)坐標(biāo)(1,n),與y軸的交點(diǎn)在(0,2),(0,3)之間(不包含端點(diǎn)),則下列結(jié)論:①a+b=0;②;③若點(diǎn)(-2,y1),,(2y3)在此拋物線上,則y1y2y3;④當(dāng)1<x<3時(shí),總有ax2+bx+c>0;⑤關(guān)于x的方程ax2+bx+c=n-1有兩個(gè)不相等的實(shí)數(shù)根.正確的是(

A.①②④⑤B.①②③④C.④⑤D.②③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,我們定義直線為拋物線a、b、c為常數(shù),a≠0)的“夢(mèng)想直線”;有一個(gè)頂點(diǎn)在拋物線上,另有一個(gè)頂點(diǎn)在y軸上的三角形為其“夢(mèng)想三角形”,已知拋物線與其“夢(mèng)想直線”交于AB兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與x軸負(fù)半軸交于點(diǎn)C

1)填空:該拋物線的“夢(mèng)想直線”的解析式為 ,點(diǎn)A的坐標(biāo)為 ,點(diǎn)B的坐標(biāo)為 ;

2)如圖,點(diǎn)M為線段BC上一動(dòng)點(diǎn),將ACMAM所在直線為對(duì)稱軸翻折,點(diǎn)C的對(duì)稱點(diǎn)為N,若AMN為該拋物線的“夢(mèng)想三角形”,求點(diǎn)N的坐標(biāo);

3)在該拋物線的“夢(mèng)想直線”上,是否存在點(diǎn)P,使ACP為等腰三角形?若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C = 90°,點(diǎn)O是斜邊AB上一定點(diǎn),到點(diǎn)O的距離等于OB的所有點(diǎn)組成圖形W,圖形WAB,BC分別交于點(diǎn)DE,連接AE,DE,∠AED=B

1)判斷圖形WAE所在直線的公共點(diǎn)個(gè)數(shù),并證明.

2)若,,求OB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】縉云山是國家級(jí)自然風(fēng)景名勝區(qū),上周周末,小明和媽媽到縉云山游玩,登上了香爐峰觀景塔,從觀景塔底中心處水平向前走米到點(diǎn)處,再沿著坡度為的斜坡走一段距離到達(dá)點(diǎn),此時(shí)回望觀景塔,更顯氣勢(shì)宏偉,在點(diǎn)觀察到觀景塔頂端的仰角為再往前沿水平方向走米到處,觀察到觀景塔頂端的仰角是,則觀景塔的高度為( )(tan22°≈0.4

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓柱底面半徑為cm,高為18cm,點(diǎn)A、B分別是圓柱兩底面圓周上的點(diǎn),且A、B在同一母線上,用一根棉線從A點(diǎn)順著圓柱側(cè)面繞3圈到B點(diǎn),則這根棉線的長度最短為( 。

A.24cmB.30cmC.2cmD.4cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工藝品店購進(jìn)AB兩種工藝品,已知這兩種工藝品的單價(jià)之和為200元,購進(jìn)2個(gè)A種工藝品和3個(gè)B種工藝品需花費(fèi)520元.

1)求A,B兩種工藝品的單價(jià);

2)該店主欲用9600元用于進(jìn)貨,且最多購進(jìn)A種工藝品36個(gè),B種工藝品的數(shù)量不超過A種工藝品的2倍,則共有幾種進(jìn)貨方案?

3)已知售出一個(gè)A種工藝品可獲利10元,售出一個(gè)B種工藝品可獲利18元,該店主決定每售出一個(gè)B種工藝品,為希望工程捐款m元,在(2)的條件下,若A,B兩種工藝品全部售出后所有方案獲利均相同,則m的值是多少?此時(shí)店主可獲利多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案