如圖,拋物線(xiàn)與x軸交與A(1,0),B(- 3,0)兩點(diǎn).
(1)求該拋物線(xiàn)的解析式;
(2)設(shè)(1)中的拋物線(xiàn)交y軸與C點(diǎn),在該拋物線(xiàn)的對(duì)稱(chēng)軸上是否存在點(diǎn)Q,使得△QAC的周長(zhǎng)最?若存在,求出Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)在(1)中的拋物線(xiàn)上的第二象限上是否存在一點(diǎn)P,使△PBC的面積最大?,若存在,求出點(diǎn)P的坐標(biāo)及△PBC的面積最大值.若沒(méi)有,請(qǐng)說(shuō)明理由.
(1)拋物線(xiàn)解析式為:y=-x2-2x+3;
(2)存在,Q(-1,2);
(3)存在,點(diǎn)P坐標(biāo)為(-,),S△BPC最大=;
【解析】
試題分析:(1)利用待定系數(shù)法求出拋物線(xiàn)解析式即可;
(2)由題知A、B兩點(diǎn)關(guān)于拋物線(xiàn)的對(duì)稱(chēng)軸x=-1對(duì)稱(chēng),直線(xiàn)BC與x=-1的交點(diǎn)即為Q點(diǎn),此時(shí)△QAC的周長(zhǎng)最小,首先求出直線(xiàn)BC的解析式,進(jìn)而得出Q點(diǎn)坐標(biāo)即可.
(3)存在,設(shè)得點(diǎn)P的坐標(biāo),將△BCP的面積表示成二次函數(shù),根據(jù)二次函數(shù)最值的方法即可求得點(diǎn)P的坐標(biāo);
試題解析:(1)將A(1,0),B(-3,0)代y=-x2+bx+c中得
,
∴解得:,
∴拋物線(xiàn)解析式為:y=-x2-2x+3;
(2)存在,
由題知A、B兩點(diǎn)關(guān)于拋物線(xiàn)的對(duì)稱(chēng)軸x=-1對(duì)稱(chēng),
∴直線(xiàn)BC與x=-1的交點(diǎn)即為Q點(diǎn),此時(shí)△AQC周長(zhǎng)最小
∵y=-x2-2x+3,
∵C的坐標(biāo)為:(0,3),B(-3,0),設(shè)直線(xiàn)BC解析式為:y=kx+d,
∴,
解得:,
∴直線(xiàn)BC解析式為:y=x+3;
Q點(diǎn)坐標(biāo)即為的解,
∴,
∴Q(-1,2);
存在,如下圖:
設(shè)P點(diǎn)(x,-x2-2x+3)(-3<x<0)
∵S△BPC=S四邊形BPCO-S△BOC=S四邊形BPCO-,
若S四邊形BPCO有最大值,則S△BPC就最大,
∴S四邊形BPCO=S△BPE+S直角梯形PEOC=BEPE+OE(PE+OC)=(x+3)(-x2-2x+3)+(-x)(-x2-2x+3+3)
=(x+)2+,
當(dāng)x=-時(shí),S四邊形BPCO最大值=,
∴S△BPC最大=-=,
當(dāng)x=-時(shí),-x2-2x+3=,
∴點(diǎn)P坐標(biāo)為(-,)
考點(diǎn):1、待定系數(shù)法;2、線(xiàn)段的性質(zhì);3、二次函數(shù)的性質(zhì)
考點(diǎn)分析: 考點(diǎn)1:二次函數(shù) 定義:年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年黑龍江省大慶市九年級(jí)上學(xué)期期末檢測(cè)數(shù)學(xué)試卷(解析版) 題型:填空題
不等式組的解集是,那么m的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年河北省邯鄲市九年級(jí)第一次模擬考試數(shù)學(xué)試卷(解析版) 題型:選擇題
據(jù)報(bào)道,某小區(qū)居民李先生改進(jìn)用水設(shè)備,在十年內(nèi)幫助他居住小區(qū)的居民累計(jì)節(jié)水300 000噸.將300 000用科學(xué)記數(shù)法表示應(yīng)為( )
A.0.3× B.3× C.3× D.30×
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年福建省武夷山市九年級(jí)上學(xué)期期末質(zhì)量監(jiān)測(cè)數(shù)學(xué)試卷(解析版) 題型:填空題
用10米長(zhǎng)的鋁材制成一個(gè)矩形窗框,使它的面積為6平方米.若設(shè)它的一條邊長(zhǎng)為x 米,則根據(jù)題意可列出關(guān)于x的方程為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年福建省武夷山市九年級(jí)上學(xué)期期末質(zhì)量監(jiān)測(cè)數(shù)學(xué)試卷(解析版) 題型:選擇題
如圖,在Rt△ABC中,∠ACB=90°,∠ABC=30°,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)至△A′B′C,使得點(diǎn)A′恰好落在AB上,則旋轉(zhuǎn)角度為( )
A.60° B.30° C.90° D.150°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年浙江省臺(tái)州市九年級(jí)上學(xué)期第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題
為解方程x4-5x2+4=0,我們可以將x2視為一個(gè)整體,然后設(shè)x2=y(tǒng),則 x4=y(tǒng)2,
原方程化為y2-5y+4=0.①
解得y1=1,y2=4
當(dāng)y=1時(shí),x2=1.∴x=±1
當(dāng)y=4時(shí),x2=4,∴x=±2。
∴原方程的解為x1=1,x2=-1,x3=2,x4=-2
解答問(wèn)題:
(1)填空:在由原方程得到方程①的過(guò)程中,利用 法達(dá)到了降次的目的,體現(xiàn)了 的數(shù)學(xué)思想.
(2)解方程:(x2-2x)2+x2-2x-6=0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年浙江省臺(tái)州市九年級(jí)上學(xué)期第一次月考數(shù)學(xué)試卷(解析版) 題型:填空題
設(shè)是方程的兩個(gè)實(shí)數(shù)根,則的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年云南省九年級(jí)上學(xué)期第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題
(6分)國(guó)家教育部規(guī)定“中小學(xué)生每天在校體育活動(dòng)時(shí)間不低于1小時(shí)”.某中學(xué)為了了解學(xué)生體育活動(dòng)情況,隨機(jī)抽查了520名畢業(yè)班學(xué)生,調(diào)查內(nèi)容是:“每天鍛煉是否超過(guò)1小時(shí)及未超過(guò)1小時(shí)的原因”.以下是根據(jù)所得的數(shù)據(jù)制成的統(tǒng)計(jì)圖的一部分.
根據(jù)以上信息,解答下列問(wèn)題:
(1)每天在校鍛煉時(shí)間超過(guò)1小時(shí)的人數(shù)是 ;
(2)請(qǐng)將圖2補(bǔ)充完整;
(3)2014年我市初中畢業(yè)生約為9.6萬(wàn)人,請(qǐng)你估計(jì)今年全市初中畢業(yè)生中每天鍛煉時(shí)間超過(guò)1小時(shí)的學(xué)生約有多少萬(wàn)人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年天津市九年級(jí)上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:選擇題
方程的根為( )
A.3 B.4 C.4或3 D.-4或3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com