【題目】如圖,已知△ABC.(1)請(qǐng)用圓規(guī)和直尺作出⊙P,使圓心P到AB邊和BC邊的距離相等,且⊙P經(jīng)過(guò)A,B兩點(diǎn)(保留作圖痕跡,不寫作法和證明);
(2)若∠B=60°,AB=6,求⊙P的半徑.
【答案】(1)見解析;(2)⊙P的半徑為2.
【解析】
(1)先作∠ABC的平分線BD,再作AB的垂直平分線交OD于P,交AB于H,然后以P點(diǎn)為圓心,PB為半徑作圓即可;
(2)先利用角平分線得到∠ABP=30°,再根據(jù)PH垂直平分AB得到BH=3,然后根據(jù)含30度的直角三角形三邊的關(guān)系計(jì)算PB即可.
解:(1)如圖,⊙P為所作;
(2)∵點(diǎn)P到AB邊和BC邊的距離相等,
∴OP平分∠ABC,
∴∠ABP=∠ABC=×60°=30°,
∵PH垂直平分AB,
∴BH=AB=3,
在Rt△PBH中,PH=BH=,
∴PB=2PH=2,
即⊙P的半徑為2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)為1,點(diǎn)A,B均在格點(diǎn)上.則線段AB的長(zhǎng)為 .請(qǐng)借助網(wǎng)格,僅用無(wú)刻度的直尺在AB上作出點(diǎn)P,使AP=.
(2)⊙O為△ABC的外接圓,請(qǐng)僅用無(wú)刻度的直尺,依下列條件分別在圖2,圖3的圓中畫出一條弦,使這條弦將△ABC分成面積相等的兩部分(保留作圖痕跡,不寫作法,請(qǐng)下結(jié)論注明你所畫的弦).
①如圖2,AC=BC;
②如圖3,P為圓上一點(diǎn),直線l⊥OP且l∥BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,,點(diǎn)在以為直徑的半圓內(nèi).請(qǐng)僅用無(wú)刻度的直尺分別按下列要求畫圖(保留畫圖痕跡).
(1)在圖1中作弦,使;
(2)在圖2中以為邊作一個(gè)45°的圓周角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=BC=2,∠ABC=120°,將△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)角α(0°<α<90°)得△A1BC1,A1B交AC于點(diǎn)E,A1C1分別交AC、BC于D、F兩點(diǎn).
(1)如圖1,觀察并猜想,在旋轉(zhuǎn)過(guò)程中,線段BE與BF有怎樣的數(shù)量關(guān)系?并證明你的結(jié)論;
(2)如圖2,當(dāng)α=30°時(shí),試判斷四邊形BC1DA的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8.動(dòng)點(diǎn)P從點(diǎn)A開始沿折線AC-CB-BA運(yùn)動(dòng),點(diǎn)P在AC,CB,BA邊上運(yùn)動(dòng)的速度分別為每秒3,4,5個(gè)單位.直線l從與AC重合的位置開始,以每秒個(gè)單位的速度沿CB方向移動(dòng),移動(dòng)過(guò)程中保持l∥AC,且分別與CB,AB邊交于E,F(xiàn)兩點(diǎn),點(diǎn)P與直線l同時(shí)出發(fā),設(shè)運(yùn)動(dòng)的時(shí)間為t秒,當(dāng)點(diǎn)P第一次回到點(diǎn)A時(shí),點(diǎn)P和直線l同時(shí)停止運(yùn)動(dòng).
(1)當(dāng)t=5秒時(shí),點(diǎn)P走過(guò)的路徑長(zhǎng)為_________;當(dāng)t=_________秒時(shí),點(diǎn)P與點(diǎn)E重合;
(2)當(dāng)點(diǎn)P在AC邊上運(yùn)動(dòng)時(shí),連結(jié)PE,并過(guò)點(diǎn)E作AB的垂線,垂足為H. 若以C、P、E為頂點(diǎn)的三角形與△EFH相似,試求線段EH的值;
(3)當(dāng)點(diǎn)P在折線AC-CB-BA上運(yùn)動(dòng)時(shí),作點(diǎn)P關(guān)于直線EF的對(duì)稱點(diǎn)Q.在運(yùn)動(dòng)過(guò)程中,若形成的四邊形PEQF為菱形,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,二次函數(shù)的圖象與x軸交于A、B兩點(diǎn),其中A點(diǎn)坐標(biāo)為,點(diǎn),另拋物線經(jīng)過(guò)點(diǎn),M為它的頂點(diǎn).
求拋物線的解析式;
求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解方程:
(1)(x+2)2=25
(2)x2﹣2x﹣2=0
(3)x2﹣6x﹣16=0
(4)(x﹣2)2﹣(3x+8)2=0
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=ax2經(jīng)過(guò)點(diǎn)A(2,1).
(1) 求a的值;
(2) 如圖1,點(diǎn)M為x軸負(fù)半軸上一點(diǎn),線段AM交拋物線于N.若△OMN為等腰三角形,求點(diǎn)N的坐標(biāo);
(3) 如圖2,直線y=kx-2k+3交拋物線于B、C兩點(diǎn),過(guò)點(diǎn)C作CP⊥x軸,交直線AB于點(diǎn)P,請(qǐng)說(shuō)明點(diǎn)P一定在某條確定的直線上運(yùn)動(dòng),求出這條直線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】新定義:[a,b,c]為二次函數(shù)y=ax2+bx+e(a≠0,a,b,c為實(shí)數(shù))的“圖象數(shù)”,如:y=-x2+2x+3的“圖象數(shù)”為[-1,2,3]
(1)二次函數(shù)y=x2-x-1的“圖象數(shù)”為 .
(2)若圖象數(shù)”是[m,m+1,m+1]的二次函數(shù)的圖象與x軸只有一個(gè)交點(diǎn),求m的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com