【題目】如圖,ABC為等邊三角形,AB3,若點(diǎn)PABC內(nèi)一動(dòng)點(diǎn),且滿足∠PAB=∠ACP,則線段PB長(zhǎng)度的最小值為_____

【答案】

【解析】

由等邊三角形的性質(zhì)得出∠ABC=BAC=60°,AC=AB=3,求出∠APC=120°,當(dāng)PBAC時(shí),PB長(zhǎng)度最小,設(shè)垂足為D,此時(shí)PA=PC,由等邊三角形的性質(zhì)得出AD=CD=AC=,∠PAC=ACP=30°,∠ABD=ABC=30°,求出PD=ADtan30°=AD=BD=AD=,即可得出答案.

解:∵△ABC是等邊三角形,

∴∠ABC=∠BAC60°,ACAB2

∵∠PAB=∠ACP,

∴∠PAC+ACP60°,

∴∠APC120°,

∴點(diǎn)P的運(yùn)動(dòng)軌跡是,當(dāng)O、P、B共線時(shí),PB長(zhǎng)度最小,設(shè)OBACD,如圖所示:

此時(shí)PAPC,OBAC

ADCDAC,∠PAC=∠ACP30°,∠ABDABC30°,

PDADtan30°×,

BDAD,

PBBDPD

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與探究:

已知二次函數(shù)y=﹣x2+x+2的圖象與x軸交于A,B兩點(diǎn)(點(diǎn)B在點(diǎn)A的左側(cè)),與y軸交于點(diǎn)C

1)求點(diǎn)A,BC的坐標(biāo);

2)求證:ABC為直角三角形;

3)如圖,動(dòng)點(diǎn)EF同時(shí)從點(diǎn)A出發(fā),其中點(diǎn)E以每秒2個(gè)單位長(zhǎng)度的速度沿AB邊向終點(diǎn)B運(yùn)動(dòng),點(diǎn)F以每秒個(gè)單位長(zhǎng)度的速度沿射線AC方向運(yùn)動(dòng).當(dāng)點(diǎn)F停止運(yùn)動(dòng)時(shí),點(diǎn)E隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒,連結(jié)EF,將AEF沿EF翻折,使點(diǎn)A落在點(diǎn)D處,得到DEF.當(dāng)點(diǎn)FAC上時(shí),是否存在某一時(shí)刻t,使得DCO≌△BCO?(點(diǎn)D不與點(diǎn)B重合)若存在,求出t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了提高學(xué)生書寫漢字的能力,增強(qiáng)保護(hù)漢字的意識(shí),某校舉辦了漢字聽寫大賽活動(dòng).經(jīng)選拔后有50名學(xué)生參加決賽,這50名學(xué)生同時(shí)聽寫50個(gè)漢字,若每正確聽寫出一個(gè)漢字得1分,最終沒有學(xué)生得分低于25分,也沒有學(xué)生得滿分.根據(jù)測(cè)試成績(jī)繪制出頻數(shù)分布表和頻數(shù)分布直方圖(如圖).

請(qǐng)結(jié)合圖標(biāo)完成下列各題:

1)求表中a的值;

2)請(qǐng)把頻數(shù)分布直方圖補(bǔ)充完整;

3)若本次決賽的前5名是3名女生A、B、C2名男生M、N,若從3名女生和2名男生中分別抽取1人參加市里的比賽,試用列表法或畫樹狀圖的方法求出恰好抽到女生A和男生M的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,有以下結(jié)論:

a+b+c0;ab+c1;abc0;④9a3b+c0ca1.其中所有正確結(jié)論的序號(hào)是(  )

A.①②B.①③④C.①②③④D.①②③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰直角△OEF在坐標(biāo)系中,有E(0,2),F(2,0),將直角△OEF繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)90°得到△ADE,且A在第一象限內(nèi),拋物線y=ax2+bx+c經(jīng)過點(diǎn)A,E.且2a+3b+5=0

1)求拋物線的解析式.

2)過ED的中點(diǎn)O'O'BOEB,O'CODC,求證:OBO'C為正方形.

3)如果點(diǎn)PE開始沿EA邊以每秒2厘米的速度向點(diǎn)A移動(dòng),同時(shí)點(diǎn)Q由點(diǎn)A沿AD邊以每秒1厘米的速度向點(diǎn)D移動(dòng),當(dāng)點(diǎn)P移動(dòng)到點(diǎn)A時(shí),P,Q兩點(diǎn)同時(shí)停止,且過PGPAE,交DE于點(diǎn)G,設(shè)移動(dòng)的開始后為t秒.

S=PQ2(厘米),試寫出St之間的函數(shù)關(guān)系式,并寫出t的取值范圍?

當(dāng)S取最小時(shí),在拋物線上是否存在點(diǎn)R,使得以P,AQ,R為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出R的坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們約定:體重在選定標(biāo)準(zhǔn)的%(包含)范圍之內(nèi)時(shí)都稱為一般體重.為了解某校七年級(jí)男生中具有一般體重的人數(shù),我們從該校七年級(jí)男生中隨機(jī)選出10名男生,測(cè)量出他們的體重(單位:kg),收集并整理得到如下統(tǒng)計(jì)表:

男生序號(hào)

體重kg

45

62

55

58

67

80

53

65

60

55

根據(jù)以上表格信息解決如下問題:

1)將這組數(shù)據(jù)的三個(gè)統(tǒng)計(jì)量:平均數(shù)、中位數(shù)和眾數(shù)填入下表:

平均數(shù)

中位數(shù)

眾數(shù)

2)請(qǐng)你選擇其中一個(gè)統(tǒng)計(jì)量作為選定標(biāo)準(zhǔn),說明選擇的理由.并按此選定標(biāo)準(zhǔn)找出這10名男生中具有一般體重的男生.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】移動(dòng)通信公司建設(shè)的鋼架信號(hào)塔(如圖1),它的一個(gè)側(cè)面的示意圖(如圖2).CD是等腰三角形ABC底邊上的高,分別過點(diǎn)A、點(diǎn)B作兩腰的垂線段,垂足分別為B1A1,再過A1B1分別作兩腰的垂線段所得的垂足為B2,A2,用同樣的作法依次得到垂足B3,A3,….若AB3米,sinα,則水平鋼條A2B2的長(zhǎng)度為( 。

A. B. 2C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文教用品商店欲購(gòu)進(jìn)兩種筆記本,用 元購(gòu)進(jìn)的種筆記本與用元購(gòu)進(jìn)的種筆記本的數(shù)量相同,每本種筆記本的進(jìn)價(jià)比每本種筆記本的進(jìn)價(jià)貴元,

1)求兩種筆記本每本的進(jìn)價(jià)分別為多少元?

2)若該商店種筆記本每本售價(jià)元,種筆記本每本售價(jià)元,準(zhǔn)備購(gòu)進(jìn)兩種筆記本共本,且這兩種筆記本全部售出后總獲利不少于元,則最多購(gòu)進(jìn)種筆記本多少本?.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A在x軸負(fù)半軸上,點(diǎn)B在y軸正半軸上,線段OB的長(zhǎng)是方程x2﹣2x﹣8=0的解,tan∠BAO=

(1)求點(diǎn)A的坐標(biāo);

(2)點(diǎn)E在y軸負(fù)半軸上,直線ECAB,交線段AB于點(diǎn)C,交x軸于點(diǎn)D,SDOE=16.若反比例函數(shù)y=的圖象經(jīng)過點(diǎn)C,求k的值;

(3)在(2)條件下,點(diǎn)M是DO中點(diǎn),點(diǎn)N,P,Q在直線BD或y軸上,是否存在點(diǎn)P,使四邊形MNPQ是矩形?若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案