【題目】用直接開平方法解方程:
(1) 4(x-2)2-36=0;
(2) x2+6x+9=25;
(3) 4(3x-1)2-9(3x+1)2=0.
【答案】(1) x1=5,x2=-1;(2)x1=-8,x2=2;(3)x1=-,x2=-
【解析】試題分析:
(1)先移項(xiàng),系數(shù)化為1后,再用直接開平方求解;
(2)左邊因式分解為一個完全平方式后,再用直接開平方法求解;
(3)先移項(xiàng),再用直接開平方法求解.
試題解析:
(1) 4(x-2)2-36=0,(x-2)2=9,x-2=±3,所以x1=5,x2=-1;
(2) x2+6x+9=25,(x+3)2=25,x+2=±5,所以x1=-8,x2=2;
(3) 4(3x-1)2-9(3x+1)2=0,2(3x-1)=±3(3x+1),所以x1=-,x2=-.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=16cm,BC=6cm,點(diǎn)P從點(diǎn)A出發(fā)沿AB向點(diǎn)B移動(不與點(diǎn)A、B重合),一直到達(dá)點(diǎn)B為止;同時,點(diǎn)Q從點(diǎn)C出發(fā)沿CD向點(diǎn)D移動(不與點(diǎn)C、D重合).運(yùn)動時間設(shè)為t秒.
(1)若點(diǎn)P、Q均以3cm/s的速度移動,則:AP= cm;QC= cm.(用含t的代數(shù)式表示)
(2)若點(diǎn)P為3cm/s的速度移動,點(diǎn)Q以2cm/s的速度移動,經(jīng)過多長時間PD=PQ,使△DPQ為等腰三角形?
(3)若點(diǎn)P、Q均以3cm/s的速度移動,經(jīng)過多長時間,四邊形BPDQ為菱形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,對稱軸為直線.下列結(jié)論中,正確的是( 。
A. abc>0 B. a+b=0 C. 2b+c>0 D. 4a+c<2b
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,自正方形ABCD的頂點(diǎn)A引兩條射線分別交BC、CD于E、F,∠EAF=45°,在保持∠EAF=45°的前提下,當(dāng)點(diǎn)E、F分別在邊BC、CD上移動時,BE+DF與EF的關(guān)系是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與探究
數(shù)學(xué)課上,老師讓同學(xué)們利用三角形紙片進(jìn)行操作活動,探究有關(guān)線段之間的關(guān)系.
問題情境:
如圖1,三角形紙片ABC中,∠ACB=90°,AC=BC.將點(diǎn)C放在直線l上,點(diǎn)A,B位于直線l的同側(cè),過點(diǎn)A作AD⊥l于點(diǎn)D.
初步探究:
(1)在圖1的直線l上取點(diǎn)E,使BE=BC,得到圖2.猜想線段CE與AD的數(shù)量關(guān)系,并說明理由;
變式拓展:
(2)小穎又拿了一張三角形紙片MPN繼續(xù)進(jìn)行拼圖操作,其中∠MPN=90°,MP=NP.小穎在圖 1 的基礎(chǔ)上,將三角形紙片MPN的頂點(diǎn)P放在直線l上,點(diǎn)M與點(diǎn)B重合,過點(diǎn)N作NH⊥l于點(diǎn) H.
請從下面 A,B 兩題中任選一題作答,我選擇_____題.
A.如圖3,當(dāng)點(diǎn)N與點(diǎn)M在直線l的異側(cè)時,探究此時線段CP,AD,NH之間的數(shù)量關(guān)系,并說明理由.
B.如圖4,當(dāng)點(diǎn)N與點(diǎn)M在直線l的同側(cè),且點(diǎn)P在線段CD的中點(diǎn)時,探究此時線段CD,AD,NH之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB、CD相交于點(diǎn)O,∠AOC=30°,半徑為1cm的⊙P的圓心在射線OA上,開始時,PO=6cm,如果⊙P以1cm/秒的速度沿由A向B的方向移動,那么當(dāng)⊙P的運(yùn)動時間t(秒)滿足什么條件時,⊙P與直線CD相交?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一次函數(shù)y=kx+b的自變量x的取值范圍是-2≤x≤6,相應(yīng)的函數(shù)值的范圍是-11≤y≤9,求此函數(shù)的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形網(wǎng)格中的每個小正方形的邊長都是1,每個小格的頂點(diǎn)叫做格點(diǎn).
(1)在圖1中以格點(diǎn)為頂點(diǎn)畫一個面積為10的正方形;
(2)在圖2中以格點(diǎn)為頂點(diǎn)畫一個三角形,使三角形三邊長分別為2、、;
(3)如圖3,點(diǎn)A、B、C是小正方形的頂點(diǎn),求∠ABC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了保護(hù)環(huán)境,某開發(fā)區(qū)綜合治理指揮部決定購買A,B兩種型號的污水處理設(shè)備共10臺.已知用90萬元購買A型號的污水處理設(shè)備的臺數(shù)與用75萬元購買B型號的污水處理設(shè)備的臺數(shù)相同,每臺設(shè)備價格及月處理污水量如下表所示:
(1)求m的值;
(2)由于受資金限制,指揮部用于購買污水處理設(shè)備的資金不超過165萬元,問采用何種購買方案可以使得每月處理污水量的噸數(shù)為最多?并求出最多噸數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com