【題目】如圖所示,點(diǎn)E在△ABC外部,點(diǎn)D在BC邊上,DE交AC于F,若∠1=∠2,∠C=∠E, AE=AC,
(1)求證: △ABC≌△ADE;
(2) 求證:∠2=∠3;
(3)當(dāng)∠2=90°時(shí),判斷△ABD的形狀,并說(shuō)明理由.
【答案】(1)見解析(2)見解析(3)等腰直角三角形
【解析】
(1)根據(jù)已知求得∠BAC=∠DAE,再由已知∠E=∠C,AE=AC,根據(jù)ASA可判定△ABC≌△ADE.
(2) 根據(jù)三角形的內(nèi)角和定理即可證明.
(3) 利用(1)中全等三角形對(duì)應(yīng)邊相等可得AB=AD,∠1=∠2=90°即可判斷.
(1)證明:∵∠1=∠2,
∴∠1+∠DAC=∠2+∠DAC,
即∠BAC=∠DAE,
在△ABC和△ADE中,
∴△ABC≌△ADE(ASA).
(2)
(3)∵△ABC≌△ADE,
∴AD=AB.
又∵∠1=∠2=90°,
△ABD是等腰直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△A1B1C1是由△ABC經(jīng)過(guò)平移得到的,其中,A、B、C三點(diǎn)的對(duì)應(yīng)點(diǎn)分別是A1、B1、C1,它們?cè)谄矫嬷苯亲鴺?biāo)系中的坐標(biāo)如下表所示:
△ABC | A(a,0) | B(3,0) | C(5,5) |
△A1B1C1 | A1(﹣3,2) | B1(﹣1,b) | C1(c,7) |
(1)觀察表中各對(duì)應(yīng)點(diǎn)坐標(biāo)的變化,并填空:a= ,b= ,c= ;
(2)在如圖的平面直角坐標(biāo)系中畫出△ABC及△A1B1C1;
(3)△A1B1C1的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】母親節(jié)前夕,某淘寶店主從廠家購(gòu)進(jìn)A、B兩種禮盒,已知A、B兩種禮盒的單價(jià)比為2:3,單價(jià)和為200元.
(1)求A、B兩種禮盒的單價(jià)分別是多少元?
(2)該店主購(gòu)進(jìn)這兩種禮盒恰好用去9600元,且購(gòu)進(jìn)A種禮盒最多36個(gè),B種禮盒的數(shù)量不超過(guò)A種禮盒數(shù)量的2倍,共有幾種進(jìn)貨方案?
(3)根據(jù)市場(chǎng)行情,銷售一個(gè)A種禮盒可獲利10元,銷售一個(gè)B種禮盒可獲利18元.為奉獻(xiàn)愛心,該店主決定每售出一個(gè)B種禮盒,為愛心公益基金捐款m元,每個(gè)A種禮盒的利潤(rùn)不變,在(2)的條件下,要使禮盒全部售出后所有方案獲利相同,m值是多少?此時(shí)店主獲利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)D,E分別在線段AB, AC上,CD與BE相交于O點(diǎn),已知AD=AE,現(xiàn)添加以下哪個(gè)條件仍不能判定△ABE≌△ACD( )
A. BD= CEB. ∠B=∠CC. BE=CDD. AB=AC
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為a, P為正方形邊上一動(dòng)點(diǎn),運(yùn)動(dòng)路線是A-D-C-B-A,設(shè)P點(diǎn)經(jīng) 過(guò)的路程為x,以點(diǎn)A,P,D為頂點(diǎn)的三角形的面積是y,圖象反映了y與x的關(guān)系,當(dāng)時(shí),x=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某水果批發(fā)商銷售每箱進(jìn)價(jià)為40元的蘋果,物價(jià)部門規(guī)定每箱售價(jià)不得高于55元,市場(chǎng)調(diào)查發(fā)現(xiàn),若每箱以50元的價(jià)格調(diào)查,平均每天銷售90箱,價(jià)格每提高1元,平均每天少銷售3箱.
(1)求平均每天銷售量y(箱)與銷售價(jià)x(元/箱)之間的函數(shù)關(guān)系式.
(2)求該批發(fā)商平均每天的銷售利潤(rùn)w(元)與銷售價(jià)x(元/箱)之間的函數(shù)關(guān)系式.
(3)當(dāng)每箱蘋果的銷售價(jià)為多少元時(shí),可以獲得最大利潤(rùn)?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖所示,直線,另一直線交于,交于,且,點(diǎn)為直線上一動(dòng)點(diǎn),點(diǎn)為直線上一動(dòng)點(diǎn),且.
()如圖,當(dāng)點(diǎn)在點(diǎn)右邊且點(diǎn)在點(diǎn)左邊時(shí),的平分線交的平分線于點(diǎn),求的度數(shù);
()如圖,當(dāng)點(diǎn)在點(diǎn)右邊且點(diǎn)在點(diǎn)右邊時(shí),的平分線交的平分線于點(diǎn),求的度數(shù);
()當(dāng)點(diǎn)在點(diǎn)左邊且點(diǎn)在點(diǎn)左邊時(shí),的平分線交的平分線所在直線交于點(diǎn),請(qǐng)直接寫出的度數(shù),不說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x,y的方程組,則下列結(jié)論中正確的是( )
①當(dāng)a=5時(shí),方程組的解是;
②當(dāng)x,y的值互為相反數(shù)時(shí),a=20;
③不存在一個(gè)實(shí)數(shù)a使得x=y;
④若,則a=2.
A. ①②③④ B. ②③ C. ②③④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某鐵件加工廠用如圖1的長(zhǎng)方形和正方形鐵片(長(zhǎng)方形的寬與正方形的邊長(zhǎng)相等)加工成如圖2的豎式與橫式兩種無(wú)蓋的長(zhǎng)方體鐵容器.(加工時(shí)接縫材料不計(jì))
(1)如果加工豎式鐵容器與橫式鐵容器各1個(gè),則共需要長(zhǎng)方形鐵片 張,正方形鐵片 張.
(2)現(xiàn)有長(zhǎng)方形鐵片2014張,正方形鐵片1176張,如果加工成這兩種鐵容器,剛好鐵片全部用完,那么加工的豎式鐵容器、橫式鐵容器各有多少個(gè)?
(3)把長(zhǎng)方體鐵容器加蓋可以加工成為鐵盒.現(xiàn)用35張鐵板做成與如圖相同的長(zhǎng)方形鐵片和正方形鐵片,已知每張鐵板可做成3個(gè)長(zhǎng)方形鐵片或4個(gè)正方形鐵片,也可以將一張鐵板做成1個(gè)長(zhǎng)方形鐵片和2個(gè)正方形鐵片.該如何充分利用這些鐵板加工成鐵盒,最多可以加工成多少個(gè)鐵盒?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com