【題目】有一塊空白地,如圖,∠ADC=90°,CD=6 m,AD=8 m,AB=26 m,BC=24 m.試求這塊空白地的面積.
科目:初中數(shù)學 來源: 題型:
【題目】某數(shù)學興趣小組研究我國古代《算法統(tǒng)宗》里這樣一首詩:我問開店李三公,眾客都來到店中,一房七客多七客,一房九客一房空.詩中后兩句的意思是:如果每一間客房住7人,那么有7人無房可;如果每一間客房住9人,那么就空出一間房.
(1)求該店有客房多少間?房客多少人?
(2)假設店主李三公將客房進行改造后,房間數(shù)大大增加.每間客房收費20錢,且每間客房最多入住4人,一次性定客房18間以上(含18間),房費按8折優(yōu)惠.若詩中“眾客”再次一起入住,他們?nèi)绾斡喎扛纤悖?/span>
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列做法正確的是( )
A. 由2(x+1)=x+7去括號、移項、合并同類項,得x=5
B. 由=1+去分母,得2(2x﹣1)=1+3(x﹣3)
C. 由2(2x﹣1)﹣3(x﹣3)=1去括號,得4x﹣2﹣3x﹣9=1
D. 由7x=4x﹣3移項,得7x﹣4x=3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】足球比賽規(guī)定:勝一場得3分,平一場得1分,負一場得0分.某足球隊共進行了6場比賽,得了12分,該隊獲勝的場數(shù)可能是( 。
A.1或2
B.2或3
C.3或4
D.4或5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度數(shù).
解:∵AD∥BC,( )
∴∠ACB+∠DAC=180° ,( )
∵∠DAC=120°,(已知)
∴∠ACB=180°﹣∠DAC= °.
∵∠ACF=20°(已知),
∴∠BCF=∠ACB﹣∠ACF= °.
∵CE平分∠BCF,
∴∠BCE=∠BCF= °.
∵EF∥AD,AD∥BC,
∴EF∥ ,( )
∴∠FEC=∠BCE= °.( )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,E是ABCD的邊CD的中點,延長AE交BC的延長線于點F.
(1)求證:△ADE≌△FCE.
(2)若∠BAF=90°,BC=5,EF=3,求CD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在下列條件中:
①∠A+∠B=∠C
②∠A:∠B:∠C=1:2:3
③∠A= ∠B= ∠C
④∠A=∠B=2∠C 中,能確定△ABC 為直角三角形的條件有( )
A. 4 個 B. 3 個 C. 2 個 D. 1 個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC 中,BC=6cm.射線 AG∥BC,點 E 從點 A 出發(fā)沿射線 AG 以 2cm/s 的速度運動,當點 E 先出發(fā) 1s 后,點 F 也從點 B 出發(fā)沿射線 BC 以 cm/s 的速度運動,分別連結(jié) AF,CE.設點 F 運動時間為 t(s),其中 t>0.
(1)當 t 為何值時,∠BAF<∠BAC;
(2)當 t 為何值時,AE=CF;
(3)當 t 為何值時,S△ABF+S△ACE<S△ABC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在□ABCD中,AB=DB,∠ABD的平分線BE交AD于點E,∠CDB的平分線DF交BC于點F.求證:四邊形DFBE是矩形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com