【題目】如圖,∠AOB30,∠AOB 內(nèi)有一定點 P,且 OP12,在 OA 上有一動點 Q,OB 上有 一動點 R。若PQR 周長最小,則最小周長是( )

A. 6 B. 12 C. 16 D. 20

【答案】B

【解析】

作點P 關于OA的對稱點點E,點P關于OB的對稱點點F,連接EF分別交OA于點Q,交OB于點R,連=OEOF,

P、E關于OA對稱,∴OE=OP=12,EOA=AOP,QE=QP,

同理可證OP=OF=12,BOP=BOFRP=RF,

OE=OF=12,EOF=EOP+FOP=2AOB=60°,

∴△OEF是等邊三角形,

EF=12,

CPQR=PQ+PR+QR=EQ+QR+RF=EF=12.

故選B.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在△ABC中,點D,E,F(xiàn)分別在BC,AB,AC邊上.

(1)當點D,E,F(xiàn)分別為BC,AB,AC邊的中點時,求證:△BED≌△DFC;
(2)若DE∥AC,DF∥AB,且AE=2,BE=3,求 的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】四邊形ABCD中,∠BAD的角平分線與邊BC交于點E,∠ADC的角平分線交直線AE于點O.

(1)若點O在四邊形ABCD的內(nèi)部,

①如圖1,若AD∥BC,∠B=40°,∠C=70°,則∠DOE= °;

②如圖2,試探索∠B、∠C、∠DOE之間的數(shù)量關系,并將你的探索過程寫下來.

(2)如圖3,若點O在四邊形ABCD的外部,請你直接寫出∠B、∠C、∠DOE之間的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示的函數(shù)圖象反映的過程是:李大爺每天早上都到公園鍛煉,他從家去公園鍛煉一會兒,又去了菜市場后馬上回家,其中表示時間,表示李大爺離他家的距離。

(1)李大爺家到公園的距離是多少千米,他在公園銀煉了多少小時;

(2)李大爺從菜市場回家的平均速度;

(3)李大爺從家到菜市場的平均速度。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC的邊AC與⊙O相交于C、D兩點,且經(jīng)過圓心O,邊AB與⊙O相切,切點為B.已知∠A=30°,則∠C的大小是( )

A.30°
B.45°
C.60°
D.40°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本題滿分8分)

某校初三年級春游,現(xiàn)有36座和42座兩種客車供選擇租用,若只租用36座客車若干輛,則正好坐滿;若只租用42座客車,則能少租一輛,且有一輛車沒有坐滿,但超過30人;已知36座客車每輛租金400元,42座客車每輛租金440.

1)該校初三年級共有多少人參加春游?

2)請你幫該校設計一種最省錢的租車方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把一張長方形紙片ABCD沿EF折疊后,點A落在CD邊上的點A '處,點B落在點B '處,若∠1=115° ,則圖中∠2的度數(shù)為(

A. 40°B. 45°C. 50°D. 60°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,△ABC△DBE均為等腰直角三角形.

(1)求證:AD=CE;

(2)求證:ADCE垂直.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD的兩邊長AB=18cm,AD=4cm,點P、Q分別從A、B同時出發(fā),P在邊AB上沿AB方向以每秒2cm的速度勻速運動,Q在邊BC上沿BC方向以每秒1cm的速度勻速運動,設運動時間為x(秒),△PBQ的面只為y(cm2).

(1)求y關于x的函數(shù)關系式,并寫出x的取值范圍.
(2)求△PBQ的面積的最大值.

查看答案和解析>>

同步練習冊答案