【題目】某商家計(jì)劃從廠家采購空調(diào)和冰箱兩種產(chǎn)品共臺,空調(diào)和冰箱的采購單價與銷售單價如表所示:
采購單價 | 銷售單價 | |
空調(diào) | ||
冰箱 |
若采購空調(diào)臺,且所采購的空調(diào)和冰箱全部售完,求商家的利潤;
廠家有規(guī)定,采購空調(diào)的數(shù)量不少于臺,且空調(diào)采購單價不低于元,問商家采購空調(diào)多少臺時總利潤最大?并求最大利潤.
【答案】(1)9840元;(2)商家采購空調(diào)臺時,獲得的總利潤最大,最大利潤為元.
【解析】
(1)當(dāng)采購空調(diào)12臺時,冰箱采購8臺,根據(jù)“總利潤=單臺冰箱利潤×冰箱采購數(shù)量+單臺空調(diào)利潤×空調(diào)采購數(shù)量”列式計(jì)算,即可得出結(jié)論;
(2)設(shè)空調(diào)的采購數(shù)量為x臺,則冰箱的采購數(shù)量為(20-x)臺,設(shè)總利潤為W(元),根據(jù)“采購空調(diào)的數(shù)量不少于10臺,且空調(diào)采購單價不低于1200元”即可得出關(guān)于x的一元一次方程組,解方程組即可得出x的取值范圍,再結(jié)合二次函數(shù)的性質(zhì)即可解決最值問題.
(1)采購空調(diào)12臺,則采購冰箱20-12=8臺.
所售空調(diào)利潤=[1760-(-20×12+1500)]×12=6000(元),
所售冰箱利潤=[1700-(-10×8+1300)]×8=3840(元),
∴總利潤=6000+3840=9840(元).
(2)設(shè)空調(diào)的采購數(shù)量為x臺,則冰箱的采購數(shù)量為(20-x)臺,設(shè)總利潤為W(元),
根據(jù)題意得: ,
解得:10≤x≤15.
W=1760x-(-20x+1500)x+1700(20-x)-[-10(20-x)+1300](20-x)=30x2-540x+12000=30(x-9)2+9570,
∵30>0,
∴當(dāng)x>9時,W隨著x的增大而增大,
∵10≤x≤15,
∴當(dāng)x=15時,W取最大值,最大值=30×(15-9)2+9570=10650(元).
答:商家采購空調(diào)15臺時,獲得的總利潤最大,最大利潤為10650元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的半徑為4,B是⊙O外一點(diǎn),連接OB,且OB=6,過點(diǎn)B作⊙O的切線BD,切點(diǎn)為D,延長BO交⊙O于點(diǎn)A,過點(diǎn)A作切線BD的垂線,垂足為C.
(1)求證:AD平分∠BAC;
(2)求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC在直角坐標(biāo)平面內(nèi),三個頂點(diǎn)的坐標(biāo)分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).
(1)△ABC向下平移4個單位長度得到的△A1B1C1,點(diǎn)C1的坐標(biāo)是 ;
(2)以點(diǎn)B為位似中心,在網(wǎng)格內(nèi)畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,點(diǎn)C2的坐標(biāo)是 ;(畫出圖形)
(3)△A2B2C2的面積是 平方單位.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了抓住梵凈山文化藝術(shù)節(jié)的商機(jī),某商店決定購進(jìn)A、B兩種藝術(shù)節(jié)紀(jì)念品.若購進(jìn)A種紀(jì)念品8件,B種紀(jì)念品3件,需要950元;若購進(jìn)A種紀(jì)念品5件,B種紀(jì)念品6件,需要800元.
(1)求購進(jìn)A、B兩種紀(jì)念品每件各需多少元?
(2)若該商店決定購進(jìn)這兩種紀(jì)念品共100件,考慮市場需求和資金周轉(zhuǎn),用于購買這100件紀(jì)念品的資金不少于7500元,但不超過7650元,那么該商店共有幾種進(jìn)貨方案?
(3)若銷售每件A種紀(jì)念品可獲利潤20元,每件B種紀(jì)念品可獲利潤30元,在第(2)問的各種進(jìn)貨方案中,哪一種方案獲利最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知是的函數(shù),自變量的取值范圍為,下表是與的幾組對應(yīng)值
0 | 1 | 2 | 3 | 3.5 | 4 | 4.5 | … | |
1 | 2 | 3 | 4 | 3 | 2 | 1 | … |
小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),利用上述表格所反映出的與之間的變化規(guī)律,對該函數(shù)的圖象與性質(zhì)進(jìn)行了探究.下面是小明的探究過程,請補(bǔ)充完整:
(1)如圖,在平面直角坐標(biāo)系中,指出了以上表中各對對應(yīng)值為坐標(biāo)的點(diǎn). 根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象.
(2)根據(jù)畫出的函數(shù)圖象填空.
①該函數(shù)圖象與軸的交點(diǎn)坐標(biāo)為_____.
②直接寫出該函數(shù)的一條性質(zhì).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若正整數(shù)n使得在計(jì)算n+(n+1)+(n+2)的過程中,個數(shù)位上均不產(chǎn)生進(jìn)為現(xiàn)象,則稱n為“本位數(shù)”,例如2和30是“本位數(shù)”,而5和91不是“本位數(shù)”.現(xiàn)從所有大于0且小于100的“本位數(shù)”中,隨機(jī)抽取一個數(shù),抽到奇數(shù)的概率為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個紙盒內(nèi)有張完全相同的卡片,分別標(biāo)號為,,,.隨機(jī)抽取一張卡片后不放回,再隨機(jī)抽取另一張卡片.
(1)用列舉法求“兩次抽出卡片的標(biāo)號等于”的概率;
(2)小明同學(xué)連續(xù)做了次試驗(yàn),這次試驗(yàn)沒有一次出現(xiàn)“兩次抽出卡片的標(biāo)號和等于”.他說,“第次試驗(yàn)我一定能夠‘兩次抽出卡片的標(biāo)號和等于’”.你認(rèn)為他說得對嗎,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,,,是鄭州市二七區(qū)三個垃圾存放點(diǎn),點(diǎn),分別位于點(diǎn)的正北和正東方向,米,八位環(huán)衛(wèi)工人分別測得的長度如下表:
甲 | 乙 | 丙 | 丁 | 戊 | 戌 | 申 | 辰 | |
BC(單位:米) | 84 | 76 | 78 | 82 | 70 | 84 | 86 | 80 |
他們又調(diào)查了各點(diǎn)的垃圾量,并繪制了下列尚不完整的統(tǒng)計(jì)圖2,圖3:
(1)求表中長度的平均數(shù)、中位數(shù)、眾數(shù);
(2)求處的垃圾量,并將圖2補(bǔ)充完整;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)分別在菱形的邊上滑動(點(diǎn)不與重合),且.
(1)如圖1,若,求證:;
(2)如圖2,若與不垂直,(1)中的結(jié)論還成立嗎?若成立,請證明,若不成立,說明理由;
(3)如圖3,若,請直接寫出四邊形的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com