14.小華的家鄉(xiāng)正在進(jìn)行新農(nóng)村建設(shè),他爸爸在南澗水泥廠購買了100噸水泥,經(jīng)與水泥廠老板協(xié)商,計劃租用該廠A、B兩種型號的汽車共6輛,用這6輛汽車一次將水泥全部運(yùn)走,其中每輛A型汽車最多能裝該種水泥16噸,每輛B型汽車最多能裝該種水泥18噸,已知租用1輛A型汽車和2輛B型汽車共需要費用2500元,租用2輛A型汽車和1輛B型汽車共需要費用2450元,且同一種型號汽車每輛租車費用相同.
(1)求租用一輛A型汽車、一輛B型汽車的費用分別為多少元?
(2)小華的爸爸計劃此次租車費用不超過5000元,通過計算求出小華的爸爸有哪幾種租車方案?

分析 (1)找出等量關(guān)系列出方程組再求解即可.本題的等量關(guān)系為“1輛甲型汽車和2輛乙型汽車共需費用2500元”和“租用2輛甲型汽車和1輛乙型汽車共需費用2450元”.
(2)得等量關(guān)系是“將本公司100噸貨物運(yùn)往某地銷售,經(jīng)與春晨運(yùn)輸公司協(xié)商,計劃租用甲、乙兩種型號的汽車共6輛,用這6輛汽車一次將貨物全部運(yùn)走,其中每輛甲型汽車最多能裝該種貨物16噸同一種型號汽車每輛且同一種型號汽車每輛租車費用相同”.

解答 解:解:(1)設(shè)租用一輛甲型汽車的費用是x元,租用一輛乙型汽車的費用是y元.
由題意得,$\left\{\begin{array}{l}{x+2y=2500}\\{2x+y=2450}\end{array}\right.$;
解得:$\left\{\begin{array}{l}{x=800}\\{y=850}\end{array}\right.$,
答:租用一輛甲型汽車的費用是800元,租用一輛乙型汽車的費用是850元.

(2)設(shè)租用甲型汽車z輛,租用乙型汽車(6-z)輛.
由題意得$\left\{\begin{array}{l}{16z+18(6-z)≥100}\\{800z+850(6-z)≤5000}\end{array}\right.$,
解得2≤z≤4,
由題意知,z為整數(shù),
∴z=2或z=3或z=4,
∴共有3種方案,分別是:
方案一:租用甲型汽車2輛,租用乙型汽車4輛;
方案二:租用甲型汽車3輛,租用乙型汽車3輛;
方案三:租用甲型汽車4輛,租用乙型汽車2輛.
方案一的費用是800×2+850×4=5000(元);
方案二的費用是800×3+850×3=4950(元);
方案三的費用是800×4+850×2=4900(元);
∵5000>4950>4900;
∴最低運(yùn)費是方案三的費用:4900元;
答:共有三種方案,分別是:
方案一:租用甲型汽車2輛,租用乙型汽車4輛;
方案二:租用甲汽車3輛,租用乙型汽車3輛;
方案三:租用甲型汽車4輛,租用乙型汽車2輛.最低運(yùn)費是4900元.

點評 本題考查不等式組的應(yīng)用,二元一次方程組的應(yīng)用,解題關(guān)鍵是要讀懂題目的意思,找出(1)合適的等量關(guān)系:1輛甲型汽車和2輛乙型汽車共需費用2500元”和“租用2輛甲型汽車和1輛乙型汽車共需費用2450元”.(2)根據(jù)租車費用不超過5000元列出方程組,再求解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

4.已知y=kx+b,當(dāng)x=2時,y=-4;當(dāng)x=-1時,y=5.求k、b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

5.把a(bǔ)-ab2因式分解的結(jié)果是a(1+b)(1-b).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

2.已知△ABC,EF∥AC交直線AB于點E,DF∥AB交直線AC于點D.
(1)如圖1,若點F在邊BC上,
①補(bǔ)全圖形;
②判斷∠BAC與∠EFD的數(shù)量關(guān)系,并給予證明;
(2)若點F在邊BC的延長線上,(1)中的結(jié)論還成立嗎?若成立,給予證明;若不成立,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

9.教科書中這樣寫道:“我們把多項式a2+2ab+b2及a2-2ab+b2叫做完全平方式”,如果一個多項式不是完全平方式,我們常做如下變形:先添加一個適當(dāng)?shù)捻,使式子中出現(xiàn)完全平方式,再減去這個項,使整個式子的值不變,這種方法叫做配方法.配方法是一種重要的解決問題的數(shù)學(xué)方法,不僅可以將一個看似不能分解的多項式分解因式,還能解決一些與非負(fù)數(shù)有關(guān)的問題或求代數(shù)式最大值,最小值等.
例如:分解因式x2+2x-3=(x2+2x+1)-4=(x+1)2-4=(x+1+2)(x+1-2)=(x+3)(x-1);例如求代數(shù)式2x2+4x-6的最小值.2x2+4x-6=2(x2+2x-3)=2(x+1)2-8.可知當(dāng)x=-1時,2x2+4x-6有最小值,最小值是-8,根據(jù)閱讀材料用配方法解決下列問題:
(1)分解因式:m2-4m-5=(m+1)(m-5).
(2)當(dāng)a,b為何值時,多項式a2+b2-4a+6b+18有最小值,并求出這個最小值.
(3)當(dāng)a,b為何值時,多項式a2-2ab+2b2-2a-4b+27有最小值,并求出這個最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

19.因式分解:2a3-8a.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

6.如圖,在4×4方格中,以AB為一邊,第三個頂點也在格點上的等腰三角形可以作出( 。
A.7個B.6個C.4個D.3個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.解方程(組):
(1)$\left\{\begin{array}{l}{y=3-x}\\{6x+5y=21}\end{array}\right.$ 
(2)$\frac{2-x}{x-3}$=$\frac{1}{3-x}$-2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

4.已知a-2b=-1,求代數(shù)式 (a-1)2-4b(a-b)+2a的值.

查看答案和解析>>

同步練習(xí)冊答案